Skip to main content
Log in

Explicit conformally constrained Willmore minimizers in arbitrary codimension

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In our previous work (Ndiaye and Schätzle, 2014), we proved that the flat constant mean curvature tori

$$\begin{aligned} T_r := r S^1 \times \sqrt{1 - r^2} S^1 \subseteq S^3 \quad \hbox {for } 0 < r \le 1/\sqrt{2} \end{aligned}$$

minimize the Willmore energy in their conformal class in codimension one when \(r \approx 1 / \sqrt{2}\), that is \(T_r\) is close to the Clifford torus \(T_{Cliff} = T_{1/\sqrt{2}}\). In this article, we extend this to arbitrary codimension. Moreover we prove that the Clifford torus minimizes the Willmore energy in an open neighbourhood of its conformal class, again in arbitrary codimension, but the neighbourhood may depend on the codimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fischer, A., Tromba, A.: On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface. Math. Ann. 267(3), 311–345 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kirillov, A.: An Introduction to Lie Groups and Lie Algebras. In: Cambridge Studies in Advanced Mathematics, vol. 113. Cambridge University Press, Cambridge (2008)

  4. Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2), 307–339 (2002)

    MATH  Google Scholar 

  5. Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. 160(1), 315–357 (2004)

    Article  MATH  Google Scholar 

  6. Kuwert, E., Schätzle, R.: Minimizers of the Willmore functional under fixed conformal class. J. Differ. Geom. 93, 471–530 (2013)

    MATH  Google Scholar 

  7. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces. Invent. Math. 69, 269–291 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Marques, F., Neves, A.: Min-Max Theory and the Willmore Conjecture, arXiv:math.DG/1202.6036v1 (2012)

  9. Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math. 83, 153–166 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ndiaye, C.B., Schätzle, R.M.: New examples of conformally constrained Willmore minimizers of explicit type. Adv. Calc. Var. (2014, to appear)

  11. Schätzle, R.M.: Conformally constrained Willmore immersions. Adv. Calc. Var. 6, 375–390 (2013)

    Google Scholar 

  12. Schätzle, R.M.: Estimation of the conformal factor under bounded Willmore energy. Mathematische Zeitschrift 274, 1341–1383 (2013)

    Google Scholar 

  13. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis Australian National University, vol. 3 (1983)

  14. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)

    MATH  Google Scholar 

  15. Simons, J.: Minimal varities in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tromba, A.: Teichmüller Theory in Riemannian Geometry. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  17. Weiner, J.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27, 18–35 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Michael Schätzle.

Additional information

Communicated by G. Huisken.

C. B. Ndiaye and R. M. Schätzle were supported by the DFG Sonderforschungsbereich TR 71 Freiburg—Tübingen.

Appendix

Appendix

1.1 Convergence in Teichmüller space

In this appendix, we establish convergence in Teichmüller space under weak convergence in \(W^{2,2}\), as it was used in Theorem 1.3.

Proposition 5.1

Let \(f_m, f: {\Sigma }\rightarrow {\mathbb R}^n\) be smooth immersions of a closed, orientable surface with

$$\begin{aligned} \begin{array}{l} f_m \rightarrow f \hbox { weakly in } W^{2,2}({\Sigma }), \\ \limsup \limits _{m \rightarrow \infty } {{\mathcal {W}}}(f_m) < \min (8 \pi , {{\mathcal {W}}}(f) + { e_{n} }), \\ \end{array} \end{aligned}$$
(5.1)

where

$$\begin{aligned} { e_{n} } := \left\{ \begin{array}{l@{\quad }l} 4 \pi &{} \hbox {for } n = 3, \\ 8 \pi / 3 &{} \hbox {for } n = 4, \\ 2 \pi &{} \hbox {for } n \ge 5. \\ \end{array} \right. \end{aligned}$$

Then the pull-back metrics \(g_m := f_m^* { g_{{\mathbb R}^n} }\) differ from unit volume constant curvature metrics \({ g_{{ poin },m} }:= e^{-2 u_m} g_m\) by a bounded conformal factor for \(m\) large, more precisely

$$\begin{aligned} \limsup \limits _{m \rightarrow \infty } \parallel u_m \parallel _{L^\infty (\Sigma )} < \infty \end{aligned}$$
(5.2)

and

$$\begin{aligned} { \pi }(f_m^* { g_{{\mathbb R}^n} }) \rightarrow { \pi }(f^* { g_{{\mathbb R}^n} }). \end{aligned}$$
(5.3)

Proof

By the weak convergence in \(W^{2,2}({\Sigma },{\mathbb R}^n)\) we get in local charts

$$\begin{aligned} \begin{array}{l} \nabla f_m \rightarrow \nabla f, \\ g_{m,ij} \rightarrow g_{ij}, \sqrt{g_m} \rightarrow \sqrt{g}, \\ \end{array} \left\{ \begin{array}{l} \hbox {strongly in } L^p({\Sigma }), p < \infty , \\ \hbox {pointwise almost everywhere } \\ \end{array} \right. \end{aligned}$$

after passing to an appropriate subsequence. By Egoroff’s theorem, we can select for any \(\varepsilon > 0\) a Borel subset \(B_\varepsilon \subseteq \Sigma \) with

$$\begin{aligned} \begin{array}{l} \nabla f_m \rightarrow \nabla f, g_{m,ij} \rightarrow g_{ij}, g_m^{ij} \rightarrow g^{ij}, \sqrt{g_m} \rightarrow \sqrt{g} \quad \hbox {uniformly on } B_\varepsilon , \\ \mu _g(\Sigma - B_\varepsilon ) < \varepsilon . \\ \end{array} \end{aligned}$$

Then

$$\begin{aligned} A_{f_m,ij} = \partial _{ij} f_m - g_m^{kl} \langle \partial _{ij} f_m , \partial _l f_m \rangle \partial _k f_m \rightarrow A_{f,ij} \quad \hbox {weakly in } L^2(B_\varepsilon ) \end{aligned}$$

and

$$\begin{aligned} {\vec {{\mathbf H}}}_{f_m} = g_m^{ij} A_{f_m,ij} \rightarrow g^{ij} A_{f,ij} = {\vec {{\mathbf H}}}_f \quad \hbox {weakly in } L^2(B_\varepsilon ), \end{aligned}$$

hence

$$\begin{aligned} \int \limits _{B_\varepsilon } |{\vec {{\mathbf H}}}_f|^2 { \ \mathrm{d} }\mu _g \le \liminf \limits _{m \rightarrow \infty } \int \limits _{B_\varepsilon } |{\vec {{\mathbf H}}}_{f_m}|^2 { \ \mathrm{d} }\mu _{g_m} \end{aligned}$$

and by (5.1)

$$\begin{aligned} {{\mathcal {W}}}(f) \le \liminf \limits _{m \rightarrow \infty } {{\mathcal {W}}}(f_m) < 8 \pi . \end{aligned}$$

By the Li–Yau inequality, see [7, Theorem 6], we get that \(f_m \hbox { and } f\) are embeddings for large \(m\). Again by the weak convergence in \(W^{2,2}({\Sigma },{\mathbb R}^n)\)

$$\begin{aligned} f_m \rightarrow f \hbox { uniformly}, \end{aligned}$$
(5.4)

and hence we may assume

$$\begin{aligned} f_m({\Sigma }), f({\Sigma }) \subseteq B_R(0) \end{aligned}$$

for some \(R < \infty \). Clearly \(f\) is not constant, hence \(0 < osc\ f \leftarrow osc\ f_m \le 2 R\) and by [14, Lemma 1.1]

$$\begin{aligned} c_0 \le { \mathcal{H}^2 }(f_m(\Sigma )) = \mu _{g_m}({\Sigma }) \le C(n) \end{aligned}$$

for some \(0 < c_0 \le C(n) < \infty \). After passing to a subsequence, we get

$$\begin{aligned} { \mathcal{H}^2 }\lfloor f_m(\Sigma ) \rightarrow \mu \ne 0 \quad \hbox {weakly as Radon measures} \end{aligned}$$

and again by monotonicity formula, we get as in [14, Theorem 3.1]

$$\begin{aligned} f_m(\Sigma ) \rightarrow spt\ \mu \quad \hbox {in Hausdorff-distance}, \end{aligned}$$

hence by (5.4)

$$\begin{aligned} f(\Sigma ) = spt\ \mu . \end{aligned}$$
(5.5)

Next by Allard’s integral compactness theorem, see [1, Theorem 6.4] or [13, Remark 42.8], and (5.1), we get that \(\mu \) is an integral varifold and has weak mean curvature in \(L^2(\mu )\), more precisely by lower semicontinuity

$$\begin{aligned} {{\mathcal {W}}}(\mu ) \le \liminf \limits _{m \rightarrow \infty } {{\mathcal {W}}}(f_m) < 8 \pi . \end{aligned}$$

Then by the Li–Yau inequality in [7] or [5, (A.17)]

$$\begin{aligned} \theta ^2(\mu ) \le {{\mathcal {W}}}(\mu ) / (4 \pi ) < 2, \end{aligned}$$

hence \(\theta ^2(\mu ) = 1 \hbox { alomost everywhere with respect to } \mu \). Then by (5.5) we get \({ \mathcal{H}^2 }\lfloor f(\Sigma ) = \mu \) and

$$\begin{aligned} {{\mathcal {W}}}(f) = {{\mathcal {W}}}(\mu ). \end{aligned}$$
(5.6)

Combining (5.1), (5.5) and (5.6), we see

$$\begin{aligned} \begin{array}{l} genus(spt\ \mu ) = genus(\Sigma ) \ge 1, \\ \limsup \limits _{m \rightarrow \infty } {{\mathcal {W}}}(f_m) < {{\mathcal {W}}}(\mu ) + { e_{n} }, \\ \end{array} \end{aligned}$$

and obtain from [11, Proposition 2.4] that the smooth unit volume constant curvature metrics \({ g_{{ poin },m} }= e^{-2 u_m} g_m\) conformal to \(g_m\) satisfy

$$\begin{aligned} \parallel u_m \parallel _{L^\infty ({\Sigma })} \le C(n, 8 \pi , K , genus({\Sigma }) , \delta ) \end{aligned}$$
(5.7)

for \(m\) large, which establishes (5.2).

Then by standard weak compactness, see [11, Proposition 6.1], there exist diffeomorphisms \(\phi _m: {\Sigma }\mathop {\longrightarrow }\limits ^{\approx } {\Sigma }\), such that for \(\tilde{f}_m := f_m \circ \phi _m, \tilde{g}_m := \tilde{f}_m^* { g_{{\mathbb R}^n} }= e^{2 \tilde{u}_m} { \tilde{g}_{{ poin },m} }, { \tilde{g}_{{ poin },m} }\) a unit volume constant curvature metric,

$$\begin{aligned}&\tilde{f}_m \rightarrow \tilde{f} \hbox { weakly in } W^{2,2}({\Sigma }), \hbox {weakly}^* \hbox { in } W^{1,\infty }({\Sigma }),&\\&\tilde{u}_m \rightarrow \tilde{u} \hbox { weakly in } W^{1,2}({\Sigma }), \hbox {weakly}^* \hbox { in } L^\infty ({\Sigma }),&\\&{ \tilde{g}_{{ poin },m} }:= \phi _m^* { g_{{ poin },m} }\rightarrow { \tilde{g}_{{ poin }} }\quad \hbox {smoothly},&\\&\tilde{f}^* { g_{{\mathbb R}^n} }= e^{2 \tilde{u}} { \tilde{g}_{{ poin }} },&\end{aligned}$$

to some smooth unit volume constant curvature metric \({ \tilde{g}_{{ poin }} }\), and in particular

$$\begin{aligned} \tilde{f}_m \rightarrow \tilde{f} \hbox { uniformly}. \end{aligned}$$

For \(\tilde{p}_m \rightarrow \tilde{p} \in {\Sigma }\), we get by compactness of \({\Sigma }\) that \(\phi _m(\tilde{p}_m) \rightarrow p \in {\Sigma }\) for a subsequence, hence with (5.4),

$$\begin{aligned} \tilde{f}(\tilde{p}) \leftarrow \tilde{f}_m(\tilde{p}_m) = f_m(\phi _m(\tilde{p}_m))) \rightarrow f(p). \end{aligned}$$
(5.8)

Firstly for \(\tilde{p}_m = \tilde{p}\), we get \(\tilde{f}({\Sigma }) \subseteq f({\Sigma })\). Secondly for \(\tilde{p}_m := \phi _m^{-1}(p) \hbox { and } \tilde{p}_m \rightarrow \tilde{p}\) for a subsequence, we get \(\tilde{f}({\Sigma }) \supseteq f({\Sigma })\), and together

$$\begin{aligned} \tilde{f}({\Sigma }) = f({\Sigma }). \end{aligned}$$
(5.9)

We have already seen that \(f\) is an embedding, in particular it is injective and \(f^{-1}: f({\Sigma }) \rightarrow {\Sigma }\) is smooth. Then \(\phi := f^{-1} \circ \tilde{f}: {\Sigma }\rightarrow {\Sigma }\in W^{2,2}({\Sigma }) \cap W^{1,\infty }({\Sigma })\) and \(p = (f^{-1} \circ \tilde{f})(\tilde{p}) = \phi (\tilde{p})\) is uniquely determined in (5.8), hence

$$\begin{aligned} \phi _m \rightarrow \phi \quad \hbox {uniformly on } {\Sigma }\end{aligned}$$
(5.10)

and \(\tilde{f} = f \circ \phi \). For the smooth unit volume constant curvature metric \({ g_{{ poin }} }= e^{-2u} g = e^{-2u} f^* { g_{{\mathbb R}^n} }\) for some smooth \(u\), we calculate by above

$$\begin{aligned} e^{2 \tilde{u}} { \tilde{g}_{{ poin }} }= \tilde{f}^* { g_{{\mathbb R}^n} }= \phi ^* f^* { g_{{\mathbb R}^n} }= \phi ^*(e^{2u} { g_{{ poin }} }) = e^{2 (u \circ \phi )} \phi ^* { g_{{ poin }} }. \end{aligned}$$
(5.11)

Then \(\phi : ({\Sigma },{ \tilde{g}_{{ poin }} }) \rightarrow ({\Sigma },{ g_{{ poin }} })\) is conformal, in particular satisfies the Cauchy–Riemann equations in local conformal charts with respect to \({ g_{{ poin }} }\hbox { and } { \tilde{g}_{{ poin }} }\), hence is harmonic and smooth. Then \(\tilde{f} = f \circ \phi \) is smooth as well, hence an immersion. As \({{\mathcal {W}}}(\tilde{f}) = {{\mathcal {W}}}(f) < 8 \pi \), we see that \(\tilde{f}\) is an embedding by an inequality of Li and Yau [7], in particular \(\tilde{f} \hbox { and hence } \phi \) are injective. Clearly by (5.9), we see

$$\begin{aligned} \phi ({\Sigma }) = f^{-1}(\tilde{f}({\Sigma })) = f^{-1}(f({\Sigma })) = {\Sigma }, \end{aligned}$$

and \(\phi \) is also surjective, hence \(\phi \) is bijective. As \(u, \tilde{u} \in L^\infty ({\Sigma })\) and \(D \phi \) is continuous, we conclude further that \(D \phi \) is of full rank everywhere on \({\Sigma }\), hence \(\phi \) is a diffeomorphism. By (5.11),

$$\begin{aligned} { \tilde{g}_{{ poin }} }= \phi ^* { g_{{ poin }} }. \end{aligned}$$
(5.12)

Then we can replace \(\phi _m \hbox { by } \phi _m \circ \phi ^{-1}\) and get by (5.10) that \(\phi _m \rightarrow id_{\Sigma }\hbox { uniformly on } {\Sigma }\), in particular \(\phi _m \simeq id_{{\Sigma }} \hbox { for } m\) large and \({ \tilde{g}_{{ poin }} }= { g_{{ poin }} }\) by (5.12). This yields

$$\begin{aligned}&{ \pi }(f_m^* { g_{{\mathbb R}^n} }) = { \pi }({ g_{{ poin },m} }) = { \pi }(\phi _m^* { g_{{ poin },m} }) = { \pi }({ \tilde{g}_{{ poin },m} }) \rightarrow&\\&\rightarrow { \pi }({ \tilde{g}_{{ poin }} }) = \pi ({ g_{{ poin }} }) = { \pi }(e^{2u} { g_{{ poin }} }) = \pi (f^* { g_{{\mathbb R}^n} }),&\end{aligned}$$

which establishes (5.3). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndiaye, C.B., Schätzle, R.M. Explicit conformally constrained Willmore minimizers in arbitrary codimension. Calc. Var. 51, 291–314 (2014). https://doi.org/10.1007/s00526-013-0675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0675-8

Mathematics Subject Classification (2000)

Navigation