Skip to main content
Log in

Sequential weak continuity of null Lagrangians at the boundary

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show weak* in measures on \(\bar{\Omega }\)/ weak-\(L^1\) sequential continuity of \(u\mapsto f(x,\nabla u):W^{1,p}(\Omega ;\mathbb{R }^m)\rightarrow L^1(\Omega )\), where \(f(x,\cdot )\) is a null Lagrangian for \(x\in \Omega \), it is a null Lagrangian at the boundary for \(x\in \partial \Omega \) and \(|f(x,A)|\le C(1+|A|^p)\). We also give a precise characterization of null Lagrangians at the boundary in arbitrary dimensions. Our results explain, for instance, why \(u\mapsto \det \nabla u:W^{1,n}(\Omega ;\mathbb{R }^n)\rightarrow L^1(\Omega )\) fails to be weakly continuous. Further, we state a new weak lower semicontinuity theorem for integrands depending on null Lagrangians at the boundary. The paper closes with an example indicating that a well-known result on higher integrability of determinant by Müller (Bull. Am. Math. Soc. New Ser. 21(2): 245–248, 1989) need not necessarily extend to our setting. The notion of quasiconvexity at the boundary due to J.M. Ball and J. Marsden is central to our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The standard definition requires an additional factor \((-1)^{p+q}\), where \(p\) and \(q\) denote positions of \((p)\) and \((q)\) in an appropriate ordering of the elements of \(I^m_s\) and \(I^n_s\), respectively. However, as this factor plays no role in the proof (and could be absorbed into the corresponding constant, anyway), we omit it here.

References

  1. Alibert, J.J., Bouchitté, G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4(1), 129–147 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Ball, J.M.: A version of the fundamental theorem for young measures. In M. Rascle, D. Serre, and M. Slemrod, editors, PDEs and continuum models of phase transitions. Proceedings of an NSF-CNRS joint seminar held in Nice, France, January 18–22, 1988, volume 344 of Lect. Notes Phys., pages 207–215. Springer, Berlin (1989)

  3. Ball, J.M., Murat, F.: \(W^{1, p}\)-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58(3), 225–253 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ball, J.M., Marsden, J.E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86, 251–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  6. Ciarlet, P.G. , Gogu, R., Mardare, C.: A notion of polyconvex function on a surface suggested by nonlinear shell theory. C. R. Math. Acad. Sci. Paris 349(21–22):1207–1211 (2011)

    Google Scholar 

  7. Dacorogna, B.: Direct methods in the calculus of variations. 2nd ed. Applied Mathematical Sciences 78. Springer, Berlin (2008)

  8. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108(4), 667–689 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dunford, N., Schwartz, J.T.: Linear operators. Part I: General theory. With the assistance of William G. Bade and Robert G. Bartle. Repr. of the orig., publ. 1959 by John Wiley & Sons Ltd., Paperback ed. Wiley Classics Library. New York etc., Wiley (1988)

  10. Engelking, R.: General topology. Rev. and compl. ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag. viii, 529 p. DM 148.00 (1989)

  11. Fonseca, I.: Lower semicontinuity of surface energies. Proc. R. Soc. Edinb., Sect. A, 120(1–2):99–115 (1992)

  12. Fonseca, I., Kružík, M.: Oscillations and concentrations generated by \({\cal A}\)-free mappings and weak lower semicontinuity of integral functionals. ESAIM, Control Optim. Calc. Var. 16(2):472–502 (2010)

  13. Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29(3), 736–756 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grabovsky, Y., Mengesha, T.: Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differ. Equ. 29(1), 59–83 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grabovsky, Y., Mengesha, T.: Erratum: “Direct approach to the problem of strong local minima in calculus of variations” [Calc. Var. Partial Differential Equations 29(1), 2007, pp. 59–83; mr2305477]. Calc. Var. Partial Differ. Equ. 32(3), 407–409 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kałamajska, A.: On lower semicontinuity of multiple integrals. Colloq. Math. 74(1), 71–78 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Kałamajska, A., Kružík, M.: Oscillations and concentrations in sequences of gradients. ESAIM, Control Optim. Calc. Var. 14(1):71–104 (2008)

    Google Scholar 

  18. Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115(4), 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4(1), 59–90 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in \(W^{1,1}\) and BV. Arch. Ration. Mech. Anal. 197(2), 539–598 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kružík, M.: Quasiconvexity at the boundary and concentration effects generated by gradients. ESAIM, Control Optim. Calc. Var. (2013)

  22. Kružík, M., Luskin, M.: The computation of martensitic microstructure with piecewise laminates. J. Sci. Comput. 19, 293–308 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kružík, M., Roubíček, T.: On the measures of DiPerna and Majda. Math. Bohem. 122(4), 383–399 (1997)

    MATH  MathSciNet  Google Scholar 

  24. Kružík, M., Roubíček, T.: Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20(5–6), 511–530 (1999)

    MATH  MathSciNet  Google Scholar 

  25. Kufner, A., John, O., Fučík, S.: Function spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Leyden: Noordhoff International Publishing. (1977)

  26. Mielke, A., Sprenger, P.: Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. J. Elasticity 51(1), 23–41 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Morrey, C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  28. Müller, S.: A surprising higher integrability property of mappings with positive determinant. Bull. Am. Math. Soc. New Ser. 21(2), 245–248 (1989)

    Article  MATH  Google Scholar 

  29. Müller, S.: Higher integrability of determinants and weak convergence in \(L^1\). J. Reine Angew. Math. 412, 20–34 (1990)

    MATH  MathSciNet  Google Scholar 

  30. Pedregal, P.: Parametrized measures and variational principles. Progress in Nonlinear Differential Equations and their Applications. 30. Basel: Birkhäuser. (1997)

  31. Roubíček, T.: Relaxation in optimization theory and variational calculus. de Gruyter Series in Nonlinear Analysis and Applications. 4. Walter de Gruyter, Berlin (1997)

  32. Šilhavý, M.: Equilibrium of phases with interfacial energy: a variational approach. J. Elasticity 105(1–2), 271–303 (2011)

    MATH  MathSciNet  Google Scholar 

  33. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Texts and Monographs in Physics. Springer, Berlin (1997)

    Google Scholar 

  34. Sprenger, P.: Quasikonvexität am Rande und Null-Lagrange-Funktionen in der nichtkonvexen Variationsrechnung. PhD thesis, Universität Hannover (1996)

  35. Tartar, L.: Mathematical tools for studying oscillations and concentrations: From Young measures to \(H\)-measures and their variants. Antonić, Nenad (ed.) et al., Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives. Proceedings of the conference on multiscale problems in science and technology, Dubrovnik, Croatia, September 3–9, 2000. Springer, Berlin (2002)

  36. Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Varsovie 30, 212–234 (1937)

    MATH  Google Scholar 

Download references

Acknowledgments

The work was conducted during repeated mutual visits of the authors at the Universities of Cologne and Warsaw and at the Institute of Information Theory and Automation in Prague. The hospitality and support of all these institutions is gratefully acknowledged. The work of AK was supported by the Polish Ministry of Science grant no. N N201 397837 (years 2009-2012). SK and MK were supported by the AVCR-DAAD project CZ01-DE03/2013-2014 (DAAD project id. 56269992), and MK acknowledges support by the grants P201/10/0357 and P105/11/0411(GA ČR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kružík.

Additional information

Communicated by J. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kałamajska, A., Krömer, S. & Kružík, M. Sequential weak continuity of null Lagrangians at the boundary. Calc. Var. 49, 1263–1278 (2014). https://doi.org/10.1007/s00526-013-0621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0621-9

Mathematics Subject Classification (2000)

Navigation