Skip to main content
Log in

Existence of integral \(m\)-varifolds minimizing \(\int \!|A|^p\) and \(\int \!|H|^p,\,p>m,\) in Riemannian manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove existence of integral rectifiable \(m\)-dimensional varifolds minimizing functionals of the type \(\int |H|^p\) and \(\int |A|^p\) in a given Riemannian \(n\)-dimensional manifold \((N,g),\,2\le m<n\) and \(p>m,\) under suitable assumptions on \(N\) (in the end of the paper we give many examples of such ambient manifolds). To this aim we introduce the following new tools: some monotonicity formulas for varifolds in \({\mathbb{R }^S}\) involving \(\int |H|^p,\) to avoid degeneracy of the minimizer, and a sort of isoperimetric inequality to bound the mass in terms of the mentioned functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almgren, F.J.: The Theory of Varifolds. In: Mimeographed Notes. Princeton, Princeton University Press (1965)

    Google Scholar 

  3. Anzellotti, G., Serapioni, R., Tamanini, I.: Curvatures, functionals, currents. Indiana Univ. Math. J. 39(3), 617–669 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosio, L., Gobbino, M., Pallara, D.: Approximation problems for curvature varifolds. J. Geom. Anal. 8(1), 1–19 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brakke, K.: The Motion of a Surface by its Mean Curvature. In: Mathematical Notes. Princeton University Press, Princeton (1978)

    Google Scholar 

  6. Delladio, S.: Special generalized Gauss graphs and their application to minimization of functionals involving curvatures. J. Reine Angew. Math. 486, 17–43 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Duggan, J.P.: \(W ^{2, p}\) regularity for varifolds with mean curvature. Commun. Partial Diff. Equ. 11(9), 903–926 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Federer, H.: Geometric measure theory. Springer, New York (1969)

    MATH  Google Scholar 

  9. Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimizing curvature. Indiana Math. J. 35(1), 45–71 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hutchinson, J.E.: \(C^{1,\alpha }\) Multiple function regularity and tangent cone behaviour for varifolds with second fundamental form in \(L^p\). Proc. Symp. Pure Math. 44, 281–306 (1986)

    Article  MathSciNet  Google Scholar 

  11. Hutchinson, J.E.: Some regularity theory for curvature varifolds. In: Miniconference Geometry and Partial Differential Equations Proceedings of the Centre for Mathematical Analysis, vol. 12, pp 60–66. ANU, Canberra (1987)

  12. Kuwert, E., Schätzle, R.: Removability of isolated singularities of Willmore surfaces. Ann. Math. 160(1), 315–357 (2004)

    Article  MATH  Google Scholar 

  13. Lamm, T., Metzger, J., Schulze, F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350, 1–78 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leonardi, G.P., Masnou, S.: Locality of the mean curvature of rectifiable varifolds. Adv. Calc. Var. 2(1), 17–42 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mantegazza, C.: Su Alcune Definizioni Deboli di Curvatura per Insiemi Non Orientati. Degree Thesis, University of Pisa, http://cvgmt.sns.it/cgi/get.cgi/papers/man93/thesis.pdf (1993) (Italian)

  16. Mantegazza, C.: Curvature varifolds with boundary. J. Diff. Geom. 43, 807–843 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Menne, U.: Some applications of the isoperimetric inequality for integral varifolds. Adv. Calc. Var. 2, 247–269 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Menne, U.: Second order rectifiability of integral varifolds of locally bounded first variation. J. Geom. Anal. doi:10.1007/s12220-011-9261-5 (2011)

  19. Meeks, W.H., Rosenberg, H.: Stable minimal surfaces in \(M\,\times \,{\mathbb{R}}\). J. Diff. Geom. 68(3), 515–534 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Meeks, W.H., Rosenberg, H.: The theory of minimal surfaces in \(M\,\times \,{\mathbb{R}}\). Commun. Math. Helv. 80(4), 811–858 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mondino, A.: Some results about the existence of critical points for the Willmore functional. Math. Zeit. 266(3), 583–622 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mondino, A.: The conformal Willmore functional: a perturbative approach. Preprint arXiv:1010.4151v1 (2010), J. Geom. Anal. (24 September 2011), pp. 1–48 (Online First)

  23. Morgan, F.: Geometric Measure Theory, A Beginner’s Guide, 4th edn. Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  24. Moser, R.: A Generalization of Rellich’s Theorem and Regularity of Varifolds Minimizing Curvature. Max Planck Inst. Math. Natur. Leipzig, Preprint No 72 (2001)

  25. Nelli, B., Rosenberg, H.: Minimal surfaces in \({\mathbb{H}}^2\,\times \,{\mathbb{R}}\). Bull. Braz. Math. Soc. 33(2), 263–292 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34(6), 741–797 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  27. Simon, L.: Lectures on Geometric Measure Theory, vol. 3. Proceedings Center for Mathematics Analysis Australian National University, Canberra (1983)

    MATH  Google Scholar 

  28. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–325 (1993)

    MATH  Google Scholar 

  29. Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. In: Mathematical Notes, vol. 27. Princeton University Press, Princeton (1981)

    Google Scholar 

  30. Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. White, B.: Which ambient spaces admit isoperimetric inequalities for submanifolds? J. Diff. Geom. 83(1), 213–228 (2009)

    MATH  Google Scholar 

  32. White, B.: The maximum principle for minimal varieties of arbitrary codimension. arXiv 0906.0189v2 (2010)

  33. Willmore, T.J.: Riemannian Geometry. Oxford Science Publications, Oxford (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by M.U.R.S.T under the Project FIRB-IDEAS “Analysis and Beyond”.The author would like to thank G. Bellettini, E. Kuwert, A. Malchiodi, C. Mantegazza, U. Menne and B. White for stimulating and fundamental discussions about the topics of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mondino.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondino, A. Existence of integral \(m\)-varifolds minimizing \(\int \!|A|^p\) and \(\int \!|H|^p,\,p>m,\) in Riemannian manifolds. Calc. Var. 49, 431–470 (2014). https://doi.org/10.1007/s00526-012-0588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0588-y

Mathematics Subject Classification

Navigation