Skip to main content
Log in

Conformal invariants measuring the best constants for Gagliardo–Nirenberg–Sobolev inequalities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We introduce a family of conformal invariants associated to a smooth metric measure space which generalize the relationship between the Yamabe constant and the best constant for the Sobolev inequality to the best constants for Gagliardo–Nirenberg–Sobolev inequalities \({\| w \|_q \leq C \| \nabla w \|_2^{\theta} \| w \|_p^{1-\theta}}\) . These invariants are constructed via a minimization procedure for the weighted scalar curvature functional in the conformal class of a smooth metric measure space. We then describe critical points which are also critical points for variations in the metric or the measure. When the measure is assumed to take a special form—for example, as the volume element of an Einstein metric—we use this description to show that minimizers of our invariants are only critical for certain values of p and q. In particular, on Euclidean space our result states that either p = 2(q−1) or q = 2(p−1), giving a new characterization of the GNS inequalities whose sharp constants were computed by Del Pino and Dolbeault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M.: Gagliardo–Nirenberg inequalities involving the gradient L 2-norm. C. R. Math. Acad. Sci. Paris 346(13–14), 757–762 (2008). doi:10.1016/j.crma.2008.05.015

    Google Scholar 

  2. Aubin T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Aubin T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Bailey T.N., Eastwood M.G., Gover A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24(4), 1191–1217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985)

  6. Bakry, D., Gentil, Y., Ledoux, M.: Analysis and geometry of diffusion semigroups (Monograph in preparation)

  7. Bakry, D., Qian, Z.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155(1), 98–153 (2000). doi:10.1006/aima.2000.1932

  8. Baum, H., Juhl, A.: Q-curvature and conformal holonomy. Conformal differential geometry, Oberwolfach Seminars, vol. 40. Birkhäuser, Basel (2010)

  9. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100(1), 18–24 (1991). doi:10.1016/0022-1236(91)90099-Q

    Google Scholar 

  10. Čap, A., Slovák, J.: Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, vol. 154. American Mathematical Society, Providence (2009)

  11. Carlen, E., Figalli, A.: Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller-Segel equation (preprint). ArXiv:1107.5976

  12. Case, J.S.: Smooth metric measure spaces and quasi-Einstein metrics (preprint). ArXiv:1011.2723

  13. Case, J.S.: The energy of a smooth metric measure space and applications (preprint). ArXiv:1011.2728

  14. Case, J.S.: Smooth metric measure spaces, quasi-Einstein metrics, and tractors (preprint). ArXiv:1110.3009

  15. Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor (preprint). ArXiv:1012.5405

  16. Chang, S.Y.A.: Conformal invariants and partial differential equations. Bull. Am. Math. Soc. (N.S.) 42(3), 365–393 (2005). doi:10.1090/S0273-0979-05-01058-X

    Google Scholar 

  17. Chang, S.Y.A., Gursky, M.J., Yang, P.: Conformal invariants associated to a measure. Proc. Natl. Acad. Sci. USA 103(8), 2535–2540 (2006)

    Google Scholar 

  18. Chang, S.Y.A., Gursky, M.J., Yang, P.: Conformal invariants associated to a measure: Conformally covariant operators. Pacific J. Math. 253(1), 37–56 (2011)

    Google Scholar 

  19. Chen, B.L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363–382 (2009). http://projecteuclid.org/getRecord?id=euclid.jdg/1246888488

    Google Scholar 

  20. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004). doi:http://dx.doi.org/10.1016/S0001-8708(03)00080-X

    Google Scholar 

  21. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. (9) 81(9), 847–875 (2002). doi:10.1016/S0021-7824(02)01266-7

    Google Scholar 

  22. Frank, R.L., Lieb, E.H.: A new, rearrangement-free proof of the sharp Hardy–Littlewood–Sobolev inequality. In: Spectral Theory, Function Spaces and Inequalities, Oper. Theory Adv. Appl., vol. 219, pp. 55–67. Birkhäuser, Basel (2012)

  23. Frank, R.L., Lieb, E.H.: Sharp constants in several inequalities on the heisenberg group. Ann. Math. (2) 176(1), 349–381 (2012)

    Google Scholar 

  24. Gover, A.R.: Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature. J. Geom. Phys. 60(2), 182–204 (2010). doi:10.1016/j.geomphys.2009.09.016

  25. Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  Google Scholar 

  26. Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1(1), 1–13 (1988). doi:10.2307/1990964

    Google Scholar 

  27. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009). doi:10.4007/annals.2009.169.903

    Google Scholar 

  28. Miao, P., Tam, L.F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. Partial Differ. Equ. 36(2), 141–171 (2009). doi:10.1007/s00526-008-0221-2

  29. Miao, P., Tam, L.F.: Einstein and conformally flat critical metrics of the volume functional. Trans. Am. Math. Soc. 363(6), 2907–2937 (2011). doi:10.1090/S0002-9947-2011-05195-0

    Google Scholar 

  30. Obata M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differ. Geom. 6, 247–258 (1971/72)

    MathSciNet  Google Scholar 

  31. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (preprint). ArXiv:0211159

  32. Qian Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxford Ser. (2) 48(190), 235–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984)

    MathSciNet  MATH  Google Scholar 

  34. Serrin, J., Tang, M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49(3), 897–923 (2000). doi:10.1512/iumj.2000.49.1893

  35. Sturm K.T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sturm K.T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Trudinger N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22(3), 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  39. Wei G., Wylie W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Yamabe H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Case.

Additional information

Communicated by A.Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Case, J.S. Conformal invariants measuring the best constants for Gagliardo–Nirenberg–Sobolev inequalities. Calc. Var. 48, 507–526 (2013). https://doi.org/10.1007/s00526-012-0559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0559-3

Mathematics Subject Classification (2000)

Navigation