Skip to main content
Log in

Uniqueness of selfdual periodic Chern–Simons vortices of topological-type

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In analogy with the abelian Maxwell–Higgs model (cf. Jaffe and Taubes in Vortices and monopoles, 1980) we prove that periodic topological-type selfdual vortex-solutions for the Chern–Simons model of Jackiw–Weinberg [Phys Rev Lett 64:2334–2337, 1990] and Hong et al. Phys Rev Lett 64:2230–2233, 1990 are uniquely determined by the location of their vortex points, when the Chern–Simons coupling parameter is sufficiently small. This result follows by a uniqueness and uniform invertibility property established for a related elliptic problem (see Theorem 3.6 and 3.7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin T. (1998) Some Nonlinear Problems in Riemannian Geometry. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  2. Brezis H., Merle F. (1991) Uniform estimates and blow-up behavior for solutions of −Δu = V(x)eu in two dimensions. Comm. Partial Differ. Equ. 16(8–9): 1223–1253

    MathSciNet  MATH  Google Scholar 

  3. Caffarelli L.A., Yang Y. (1995) Vortex condensation in the Chern–Simons–Higgs model: an existence theorem. Comm. Math. Phys. 168, 321–336

    Article  MATH  MathSciNet  Google Scholar 

  4. Chae D., Imanuvilov O. (2000) The existence of non-topological multivortex solutions in the relativistic selfdual Chern–Simons theory. Comm. Math. Phys. 215, 119–142

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen X., Hastings S., McLeod J., Yang Y. (1994) A nonlinear elliptic equation arising from gauge field theory and cosmology. Proc. R. Soc. Lond. A , 453–478

  6. Choe, K.: Uniqueness of the topological multivortex solution in the selfdual Chern–Simons theory. J. Math. Phys. 46, 012305 21pp (2005)

    Google Scholar 

  7. Ding W., Jost J., Li J., Peng X., Wang G. (2001) Self duality equations for Ginzburg–Landau and Seiberg–Witten type functionals with 6th order potential. Comm. Math. Phys. 217, 383–407

    Article  MATH  MathSciNet  Google Scholar 

  8. Ding W., Jost J., Li J., Wang G. (1997) The differential equation Δu =  8π −8π eu on a compact Riemann surface. Asian J. Math. 1, 230–248

    MATH  MathSciNet  Google Scholar 

  9. Ding W., Jost J., Li J., Wang G. (1998) An analysis of the two-vortex case in the Chern–Simons–Higgs model. Calc. Var. Partial Differ. Equ. 7, 87–97

    Article  MATH  MathSciNet  Google Scholar 

  10. Ding W., Jost J., Li J., Wang G. (1999) Existence results for mean field equations. Ann. Inst. Henri. Poincare Anal. Non Linéaire 16, 653–666

    Article  MATH  MathSciNet  Google Scholar 

  11. Dunne G. (1995) Self-Dual Chern–Simons Theories. Lecture. Notes in Physics, New Series M36. Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Dunne G. (1995) Aspects of Chern–Simons Theory. In: Comtet A., Jolicoeur T., Ouvry S., David F. (eds) Les Houches section LXIX, Topological Aspect of Low Dimensional Systems. EDP Sciences Springer-Verlag, Berlin Heidelberg New York, pp. 55–175

    Google Scholar 

  13. Garcia-Prada O. (1994) A direct existence proof for the vortex equation over a compact Riemannian surface. Bull. Lond. Math. Soc. 26, 88–96

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg D., Trudinger N.S. (1983) Elliptic partial differential equations of second order. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  15. Han J. (2000) Exsistence of topological multivortex solutions in selfdual gauge theories. Proc. R. Soc. Edinburgh A 130, 1293–1309

    MATH  Google Scholar 

  16. Hong M.C., Jost J., Struwe M. (1996) Asymptotic limits of a Ginzburg–Landau type functional. In: Jost J. (eds) Geometry, Analisys and the Calculus of Variations for S. Hildebrant. International Press, Cambridge, pp. 99–123

    Google Scholar 

  17. Hong J., Kim Y., Pac P.Y. (1990) Multi-vortex solutions of the Abelian Chern–Simons theory. Phys. Rev. Lett. 64, 2230–2233

    Article  MATH  MathSciNet  Google Scholar 

  18. Jackiw R., Weinberg E.J. (1990) Selfdual Chern–Simons vortices. Phys. Rev. Lett. 64, 2334–2337

    Article  MathSciNet  Google Scholar 

  19. Jaffe A., Taubes C. (1980) Vortices and monopoles. Birkhauser, Boston

    MATH  Google Scholar 

  20. Nolasco M. (2003) Non topological N-vortex condensates for the selfdual Chern–Simons theory. Comm. Pure Appl. Math. 56, 1752–1780

    Article  MATH  MathSciNet  Google Scholar 

  21. Nolasco M., Tarantello G. (1998) On a sharp Sobolev type inequality on two dimensional compact manifolds. Arch. Rat. Mech. Anal. 145, 161–195

    Article  MATH  MathSciNet  Google Scholar 

  22. Nolasco M., Tarantello G. (1999) Double vortex condensates in the Chern–Simons–Higgs theory. Calc. Var. and Partial Differ. Equ. 9, 31–94

    Article  MATH  MathSciNet  Google Scholar 

  23. Olesen P. (1991) Soliton condensation in some selfdual Chern–Simons theories. Phys. Lett. B 265, 361–365

    Article  MathSciNet  Google Scholar 

  24. Spruck J., Yang Y., (1995) Topological solutions in the selfdual Chern–Simons theory: existence and approximation. Ann. Inst. Henri. Poincaré. Anal. Non Linéaire 12, 75–97

    MATH  MathSciNet  Google Scholar 

  25. Spruck J., Yang Y. (1992) The existence of non-topological solutions in the self-dual Chern–Simons theory. Comm. Math. Phys. 149, 361–376

    Article  MATH  MathSciNet  Google Scholar 

  26. Struwe M. (2000) Variational Methods, Application to Partial Differential Equations and Hamiltonian Systems, 3rd ed., Vol 34. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. ’t Hooft G. (1979) A property of electric and magnetic flux in nonabelian gauge theories. Nucl. Phys. B 153, 141–160

    Article  MathSciNet  Google Scholar 

  28. Tarantello G. (1996) Multiple condensates solutions for the Chern–Simons–Higgs theory. J. Math. Phys. 37(8): 3769–3796

    Article  MATH  MathSciNet  Google Scholar 

  29. Tarantello G. (2006) Selfdual gauge fields vortices: an analytical approach. Birkhauser, Boston

    Google Scholar 

  30. Taubes C. (1980) Arbitrary N-vortex solutions for the first order Ginzburg–Landau equations. Comm. Math. Phys. 72, 277–292

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang R. (1991) The existence of Chern–Simons vortices. Comm. Math. Phys. 137, 587–597

    Article  MATH  MathSciNet  Google Scholar 

  32. Wang S., Yang Y. (1992) Abrikosov’s vortices in the critical coupling. SIAM J. Math. Anal. 23, 1125–1140

    Article  MATH  MathSciNet  Google Scholar 

  33. Yang Y. (2001) Solitons in Field Theory and Nonlinear Analysis Springer Monographs in Mathematics. Springer, Berlin Heidelber New York

    Google Scholar 

  34. Yang Y. (2000) On a system of nonlinear elliptic equations arising in theoretical physics. J. Funct. Anal. 170, 1–36

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Tarantello.

Additional information

Research supported by M.I.U.R. project: Variational Methods and Nonlinear Differential Equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarantello, G. Uniqueness of selfdual periodic Chern–Simons vortices of topological-type. Calc. Var. 29, 191–217 (2007). https://doi.org/10.1007/s00526-006-0062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0062-9

Keywords

Navigation