Skip to main content
Log in

State estimation of hydraulic quadruped robots using invariant-EKF and kinematics with neural networks

  • S.I.: Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT 2022)
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The research on state estimation for quadruped robots is critical. Its result passed to motion controller makes the robot navigate autonomously and adjust the gait to a more stable motion. The current research depends on a multi-sensor fusion of cameras, lidars or other proprioceptive sensors, such as Inertial Measurement Unit (IMU) and encoders. The high-frequency data are generally derived from body sensors, which is to be fused with data from external sensors directly, or preprocessed with EKF first. Due to its unguaranteed convergence and robustness of tracking state mutations, EKF is insufficient. Therefore, we study state estimation for hydraulic quadruped robot based on the fusion of IMU measurement and leg odometry in this paper, and Invariant Extended Kalman Filter (IEKF) is successfully applied to quadruped robots by using this method. Besides, neural networks are utilized to train the weight functions of foot force and the state of leg odometry, and our trained functions improve the accuracy of observation compared with common weight average methods. Finally, our experiments of accuracy show that the root mean square error of our method is significantly reduced and the absolute trajectory error is reduced by 30% compared to traditional IEKF. The algorithm achieves the drift per distance travelled below 4 cm/m. Moreover, it has good robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barfoot TD (2017) State estimation for robotics. Cambridge University Press

    Book  Google Scholar 

  2. Qin T, Li P, Shen S (2018) Vins-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot 34(4):1004–1020

    Article  Google Scholar 

  3. Ye H, Chen Y, Liu M (2019) Tightly coupled 3d lidar inertial odometryand mapping. In: 2019 international conference on robotics and automation (ICRA), pp 3144–3150, IEEE

  4. Sun K, Mohta K, Pfrommer B, Watterson M, Liu S, Mulgaonkar Y, Taylor CJ, Kumar V (2018) Robust stereo visual inertial odometry for fast autonomous flight. IEEE Robot Autom Lett 3(2):965–972

    Article  Google Scholar 

  5. Gehring C, Coros S, Hutter M, Bloesch M, Hoepflinger MA, Siegwart R (2013) Control of dynamic gaits for a quadrupedal robot. In: 2013 IEEE international conference on robotics and automation, pp 3287–3292, IEEE

  6. Gehring C, Coros S, Hutter M, Bloesch M, Fankhauser P, Hoepflinger MA, Siegwart R (2014) Towards automatic discovery of agilegaits for quadrupedal robot. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 4243–4248, IEEE

  7. Bloesch M, Gehring C, Fankhauser P, Hutter M, Hoepflinger MA, Siegwart R (2013) State estimation for legged robots on unstable and slippery terrain. In: 2013 IEEE/RSJ international conference on intel- ligent robots and systems, pp 6058–6064, IEEE

  8. Bloesch M, Hutter M, Hoepflinger MA, Leutenegger S, Gehring C, Remy CD, Siegwart R (2013) State estimation for legged robots- consistent fusion of leg kinematics and imu. Robotics 17:17–24

    Article  Google Scholar 

  9. Gehring C, Bellicoso CD, Coros S, Bloesch M, Fankhauser P, Hutter M, Siegwart R (2015) Dynamic trotting on slopes for quadrupedal robots. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5129–5135, IEEE

  10. Nobili S, Camurri M, Barasuol V, Focchi M, Caldwell DG, Semini C, Fallon MF (2017) Heterogeneous sensor fusion for accurate state estimation of dynamic legged robots. In: Robotics: science and systems

  11. Camurri M, Fallon M, Bazeille S, Radulescu A, Barasuol V, Caldwell DG, Semini C (2017) Probabilistic contact estimation and impact detection for state estimation of quadruped robots. IEEE Robot Autom Lett 2(2):1023–1030

    Article  Google Scholar 

  12. Ma J, Bajracharya M, Susca S, Matthies L, Malchano M (2016) Real- time pose estimation of a dynamic quadruped in gps-denied environ- ments for 24-hour operation. Int J Robot Res 35(6):631–653

    Article  Google Scholar 

  13. Hutter M, Gehring C, Jud D, Lauber A, Bellicoso CD, Tsounis V, Hwangbo J, Bodie K, Fankhauser P, Bloesch M et al (2016) Anymal- a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 38–44, IEEE

  14. Wisth D, Camurri M, Fallon M (2019) Robust legged robot state esti- mation using factor graph optimization. IEEE Robot Autom Lett 4(4):4507–4514

    Article  Google Scholar 

  15. Bloesch M, Burri M, Sommer H, Siegwart R, Hutter M (2017) The two-state implicit filter recursive estimation for mobile robots. IEEE Robot Autom Lett 3(1):573–580

    Article  Google Scholar 

  16. Park H-W, Wensing PM, Kim S et al (2015) Online planning for autonomous running jumps over obstacles in high-speed quadrupeds

  17. Camurri M, Ramezani M, Nobili S, Fallon M (2020) Pronto: A multi-sensor state estimator for legged robots in real-world scenarios. Front Robot AI 7:68

    Article  Google Scholar 

  18. Chilian A, Hirschmuller H, Gorner M (2011) Multisensor data fusion for robust pose estimation of a six-legged walking robot. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 2497–2504, IEEE

  19. Barrau A, Bonnabel S (2014) Intrinsic filtering on lie groups with applications to attitude estimation. IEEE Trans Autom Control 60(2):436–449

    Article  MathSciNet  Google Scholar 

  20. Barrau A, Bonnabel S (2015) An ekf-slam algorithm with consistency properties. arXiv preprint arXiv:1510.06263

  21. Barrau A, Bonnabel S (2016) The invariant extended kalman filter as a stable observer. IEEE Trans Autom Control 62(4):1797–1812

    Article  MathSciNet  Google Scholar 

  22. Barrau A, Bonnabel S (2018) Stochastic observers on lie groups: a tutorial. In: 2018 IEEE conference on decision and control (CDC), pp 1264–1269, IEEE

  23. Barrau A, Bonnabel S (2018) Invariant kalman filtering. Annu Rev Control Robot Auton Syst 1:237–257

    Article  Google Scholar 

  24. Wu K, Zhang T, Su D, Huang S, Dissanayake G (2017) An invariant- ekf vins algorithm for improving consistency. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1578–1585, IEEE

  25. Hartley R, Jadidi MG, Grizzle JW, Eustice RM (2018) Contact-aided invariant extended kalman filtering for legged robot state estimation. In: Robotics: science and systems

  26. Hartley R, Ghaffari M, Eustice RM, Grizzle JW (2020) Contact-aided invariant extended kalman filtering for robot state estimation. Int J Robot Res 39(4):402–430

    Article  Google Scholar 

  27. Hartley R, Jadidi MG, Gan L, Huang J-K, Grizzle JW, Eustice RM (2018) Hybrid contact preintegration for visual-inertial-contact state estimation using factor graphs. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3783–3790, IEEE

  28. Hartley R, MangelsonJ, Gan L, Jadidi MG, Walls JM, Eustice RM, Grizzle JW (2018) Legged robot state-estimation through combined forward kinematic and preintegrated contact factors. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 4422–4429, IEEE

  29. Chauchat P, Barrau A, Bonnabel S (2018) Invariant smoothing on lie groups. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1703–1710, IEEE

  30. Reinstein M, Hoffmann M (2012) Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory informa- tion. IEEE Trans Rob 29(2):563–571

    Article  Google Scholar 

  31. Rotella N, Schaal S, Righetti L (2018) Unsupervised contact learning for humanoid estimation and control. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 411–417, IEEE

  32. Piperakis S, Timotheatos S, Trahanias P (2019) Unsupervised gait phase estimation for humanoid robot walking. In: 2019 International conference on robotics and automation (ICRA), pp 270–276, IEEE

  33. Buchanan R, Camurri M, Dellaert F, Fallon M (2022) Learning inertial odometry for dynamic legged robot state estimation. In: Conference on robot learning, pp 1575–1584, PMLR

  34. Yang Q, Zhu R, Niu Z, Chen C, Mao Q, Zheng Y (2020) Natural frequency analysis of hydraulic quadruped robot and structural opti- mization of the leg. J Dyn Syst Meas Contr 142(1):011009

    Article  Google Scholar 

  35. Zhu R, Yang Q, Liu Y, Dong R, Jiang C, Song J (2022) Sliding mode robust control of hydraulic drive unit of hydraulic quadruped robot. Int J Control Autom Syst 20(4):1336–1350

    Article  Google Scholar 

  36. Zhu R, Yang Q, Song J, Yang S, Liu Y, Mao Q (2021) Research and improvement on active compliance control of hydraulic quadruped robot. Int J Control Autom Syst 19(5):1931–1943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangru Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Yang, Q., Zhu, R. et al. State estimation of hydraulic quadruped robots using invariant-EKF and kinematics with neural networks. Neural Comput & Applic 36, 2231–2244 (2024). https://doi.org/10.1007/s00521-023-08755-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08755-y

Keywords

Navigation