Skip to main content
Log in

A fuzzy approach for prioritization of pharmacies to improve mask distribution process during COVID-19 pandemic—a pilot study for İstanbul

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

While the whole world struggles with the COVID-19 pandemic, there are many different measures taken by countries. In this sense, the distribution of free masks to citizens between the ages of 20–65 in Turkey is one of the important measures taken against to spread of the pandemic. This distribution process is carried out through pharmacies and people can obtain their masks from any pharmacy in their area of residence. However, this situation may cause some pharmacies to be very busy, and thus social distance cannot be maintained and health and safety of the people may be threatened. In this paper, we aim to prioritize pharmacies so that only determined pharmacies in certain regions perform mask distribution process to prevent virus transmission. For this purpose, Esenler district is taken into consideration for a pilot study which is one of the risky regions in terms of virus spread in Istanbul, Turkey. Multi-criteria decision-making approach (MCDM) is used because of the necessity of handling many factors in decision-making process and the contradiction of evaluation factors in the prioritization of pharmacies. In order to best model the uncertainty in the decision process, the MCDM approach is applied in a fuzzy environment. In addition, spherical fuzzy AHP and VIKOR MCDM approaches are used as novel hybrid method in this paper. As a result of spherical fuzzy multi-criteria analysis, the pharmacies that need to provide free mask distribution in the Esenler region have been successfully identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Yang Z, Li X, Garg H, Qi M (2020) Decision support algorithm for selecting an antivirus mask over COVID-19 pandemic under spherical normal fuzzy environment. Int J Environ Res Public Health 17(10):3407. https://doi.org/10.3390/ijerph17103407

    Article  Google Scholar 

  2. Fanelli D, Piazza F (2020) Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 134:109761. https://doi.org/10.1016/j.chaos.2020.109761

    Article  MathSciNet  MATH  Google Scholar 

  3. Shang Y, Li H, Zhang R (2021) Effects of pandemic outbreak on economies: evidence from business history context. Front Public Heal 9:146. https://doi.org/10.3389/FPUBH.2021.632043/BIBTEX

    Article  Google Scholar 

  4. “Impact of COVID-19 on people’s livelihoods, their health and our food systems.” [Online]. Available: https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people’s-livelihoods-their-health-and-our-food-systems. Accessed 18 Apr 2023].

  5. Turkish Academy of Sciences, “COVID-19 Pandemics Evaluation Report,” 2020.

  6. Herrera F, Alonso S, Chiclana F, Herrera-Viedma E (2009) Computing with words in decision making: foundations, trends and prospects. Fuzzy Optim Decis Mak 8(4):337–364. https://doi.org/10.1007/s10700-009-9065-2

    Article  MATH  Google Scholar 

  7. Martínez L, Ruan D, Herrera F (2010) Computing with words in decision support systems: an overview on models and applications. Int J Comput Intell Syst 3:382–395

    Google Scholar 

  8. Triantaphyllou E (2000) Fuzzy sets and their operations. Springer, Boston, MA, pp 235–239

    Google Scholar 

  9. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  10. Ozceylan E, Ozkan B, Kabak M, Dagdeviren M (2021) “A survey on spherical fuzzy sets and clustering the literature.” İn Advances in Intelligent Systems and Computing, vol. 1197 AISC, pp 87–97. https://doi.org/10.1007/978-3-030-51156-2_12.

  11. Xu H, Chen L, Li Q, Yang J (2021) A multi-attribute decision method under uncertainty environment conditions—the green supplier evaluation perspective. Int J Environ Res Public Health 18(1):1–15. https://doi.org/10.3390/ijerph18010344

    Article  Google Scholar 

  12. Kahraman C, Oztaysi B, Otay I, Onar SC (2021) “Extensions of ordinary fuzzy sets: A comparative literature review.” In Advances in Intelligent Systems and Computing, vol. 1197 AISC, pp 1655–1665. https://doi.org/10.1007/978-3-030-51156-2_193.

  13. Kutlu Gündoğdu F, Kahraman C (2020) A novel spherical fuzzy analytic hierarchy process and its renewable energy application”. Soft Comput 24(6):4607–4621. https://doi.org/10.1007/s00500-019-04222-w

    Article  Google Scholar 

  14. Gündoǧdu FK, Kahraman C (2019) Spherical fuzzy sets and spherical fuzzy TOPSIS method. J Intell Fuzzy Syst 36(1):337–352. https://doi.org/10.3233/JIFS-181401

    Article  Google Scholar 

  15. Jaller M, Otay I (2021) “Evaluating sustainable vehicle technologies for freight transportation using spherical fuzzy AHP and TOPSIS. In Advances in Intelligent Systems and Computing, vol. 1197 AISC, pp 118–126. https://doi.org/10.1007/978-3-030-51156-2_15

  16. Gündoğdu FK, Kahraman C (2019) Extension of codas with spherical fuzzy sets. J Mult Log Soft Comput 33(4–5):481–505

    MathSciNet  MATH  Google Scholar 

  17. Farrokhizadeh E, Seyfi-Shishavan SA, Kutlu Gündoğdu F, Donyatalab Y, Kahraman C, Seifi SH (2021) A spherical fuzzy methodology integrating maximizing deviation and TOPSIS methods. Eng Appl Artif Intell 101:104212. https://doi.org/10.1016/j.engappai.2021.104212

    Article  MATH  Google Scholar 

  18. Buyuk AM, Temur GT (2021) “A framework for selection of the best food waste management alternative by a spherical fuzzy AHP based approach. In Advances in Intelligent Systems and Computing, vol 1197 AISC, pp 151–159. https://doi.org/10.1007/978-3-030-51156-2_19

  19. Otay I, Atik S (2021) Multi-criteria oil station location evaluation using spherical AHP&WASPAS: a real-life case study. In Advances in Intelligent Systems and Computing, vol 1197 AISC, pp 591–598. https://doi.org/10.1007/978-3-030-51156-2_68.

  20. Sharaf IM (2021) “Evaluating geothermal energy systems using spherical fuzzy PROMETHEE.” In Studies in Fuzziness and Soft Computing, vol 392, Springer, pp 375–397

  21. Tran BX et al (2020) Characterize health and economic vulnerabilities of workers to control the emergence of COVID-19 in an industrial zone in Vietnam. Saf Sci 129:104811. https://doi.org/10.1016/j.ssci.2020.104811

    Article  Google Scholar 

  22. Karalis V, Ismailos G, Karatza E (2020) Chloroquine dosage regimens in patients with COVID-19: safety risks and optimization using simulations. Saf Sci 129:104842. https://doi.org/10.1016/j.ssci.2020.104842

    Article  Google Scholar 

  23. J. C. Rubio-Romero, M. del C. Pardo-Ferreira, J. A. Torrecilla-García, and S. Calero-Castro, (2020) “Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic.” Saf Sci, 129:104830. https://doi.org/10.1016/j.ssci.2020.104830

  24. Emmanouil P et al (2020) In the midst of the perfect storm: swift public health actions needed in order to increase societal safety during the COVID-19 pandemic. Saf Sci 129:104810. https://doi.org/10.1016/j.ssci.2020.104810

    Article  Google Scholar 

  25. de BruinYuri B et al (2020) Initial impacts of global risk mitigation measures taken during the combatting of the COVID-19 pandemic. Saf Sci 128:104773. https://doi.org/10.1016/j.ssci.2020.104773

    Article  Google Scholar 

  26. Xu H et al (2020) Possible environmental effects on the spread of COVID-19 in China. Sci Total Environ 731:139211. https://doi.org/10.1016/j.scitotenv.2020.139211

    Article  Google Scholar 

  27. Mollalo A, Vahedi B, Rivera KM (2020) GIS-based spatial modeling of COVID-19 incidence rate in the continental United States”. Sci Total Environ 728:138884. https://doi.org/10.1016/j.scitotenv.2020.138884

    Article  Google Scholar 

  28. Chakraborty I, Maity P (2020) COVID-19 outbreak: migration, effects on society, global environment and prevention. Sci Total Environ 728:138882. https://doi.org/10.1016/j.scitotenv.2020.138882

    Article  Google Scholar 

  29. Chu DK et al (2020) Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet (London, England) 395(10242):1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9

    Article  Google Scholar 

  30. Silva ACDOE, Almeida AMD, Freire MEM, Nogueira JDA, Gir E, Nogueira WP (2020) Cloth masks as respiratory protections in the COVID-19 pandemic period: evidence gaps. Rev Bras Enferm 73(suppl 2):e20200239. https://doi.org/10.1590/0034-7167-2020-0239

    Article  Google Scholar 

  31. Chen CYC, Lei M (2021) Psychosocial factors associated with mask-wearing behavior during the COVID-19 pandemic. Psychol Health Med 27(9):1996–2006. https://doi.org/10.1080/13548506.2021.1998562

    Article  Google Scholar 

  32. Doyon VC, Khosravi-Hafshejani T, Richer V (2022) An added benefit of masks during the COVID-19 pandemic: ultravioletprotection. J Cutan Med Surg 26(1):63. https://doi.org/10.1177/12034754211034478

    Article  Google Scholar 

  33. Clase CM et al (2020) Cloth masks may prevent transmission of COVID-19: an evidence-based, risk-based approach. Ann Intern Med 173(6):489–492. https://doi.org/10.7326/M20-2567

    Article  Google Scholar 

  34. Pan Z et al (2021) Surgical masks for protection of health care personnel against COVID-19: results from an observational study. Clin Investig Med 44(2):48–54. https://doi.org/10.25011/CIM.V44I2.36355

    Article  Google Scholar 

  35. Sommerstein R et al (2020) Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. Antimicrob Resist Infect Control 9(1):1–8. https://doi.org/10.1186/S13756-020-00763-0

    Article  Google Scholar 

  36. Pires C (2021) A pre-systematic review on the use of masks as a protection material for SARS-COV-2 during the COVID-19 pandemic. Int J Clin Pract 75(9):e14215. https://doi.org/10.1111/IJCP.14215

    Article  Google Scholar 

  37. Zhou F, Wang X, Goh M (2018) Fuzzy extended VIKOR-based mobile robot selection model for hospital pharmacy. Int J Adv Robot Syst 15(4):1729881418787315. https://doi.org/10.1177/1729881418787315

    Article  Google Scholar 

  38. Manivel P, Ranganathan R (2019) An efficient supplier selection model for hospital pharmacy through fuzzy AHP and fuzzy TOPSIS. Int J Serv Oper Manag 33(4):468–493. https://doi.org/10.1504/IJSOM.2019.101588

    Article  Google Scholar 

  39. Roldán ÚB et al (2018) Multi-criteria decision analysis as a decision-support tool for drug evaluation: a pilot study in a pharmacy and therapeutics committee setting. Int J Technol Assess Health Care 34(5):519–526. https://doi.org/10.1017/S0266462318000569

    Article  Google Scholar 

  40. Rong Y, Zhang Q, Lu X, Pei Z (2019) Generalized spherical fuzzy TODIM approach to multiple criteria decision making. In Proceedings of IEEE 14th ınternational conference on ıntelligent systems and knowledge engineering, ISKE 2019, pp 118–124. https://doi.org/10.1109/ISKE47853.2019.9170313

  41. Kutlu Gundogdu F, Kahraman C (2019) Extension of WASPAS with spherical fuzzy sets. Informatica 30(2):269–292. https://doi.org/10.15388/Informatica.2019.206

    Article  MATH  Google Scholar 

  42. Mathew M, Chakrabortty RK, Ryan MJ (2020) A novel approach integrating AHP and TOPSIS under spherical fuzzy sets for advanced manufacturing system selection. Eng Appl Artif Intell 96:103988. https://doi.org/10.1016/j.engappai.2020.103988

    Article  Google Scholar 

  43. Boltürk E (2020) AS/RS technology selection using spherical fuzzy TOPSIS and neutrosophic TOPSIS. Adv Intell Syst Comput 1029:969–976. https://doi.org/10.1007/978-3-030-23756-1_115

    Article  Google Scholar 

  44. C. Kahraman, F. K. Gündogdu, S. C. Onar, and B. Oztaysi, (2020) Hospital location selection using spherical fuzzy TOPSIS. İn Proceedings of the 11th conference of the european society for fuzzy logic and technology, EUSFLAT 2019, 77–82. https://doi.org/10.2991/eusflat-19.2019.12

  45. Zheng G, Zhu N, Tian Z, Chen Y, Sun B (2012) Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Saf Sci 50(2):228–239. https://doi.org/10.1016/j.ssci.2011.08.042

    Article  Google Scholar 

  46. Li P, Li X, Zhang L, Dai L (2019) A validation research on fuzzy logic-AHP-based assessment method of operator’s situation awareness reliability. Saf Sci 119:344–352. https://doi.org/10.1016/j.ssci.2018.10.007

    Article  Google Scholar 

  47. Luo L, Zhang C, Liao H (2019) Distance-based intuitionistic multiplicative MULTIMOORA method integrating a novel weight-determining method for multiple criteria group decision making. Comput Ind Eng 131:82–98. https://doi.org/10.1016/J.CIE.2019.03.038

    Article  Google Scholar 

  48. Ilbahar E, Karaşan A, Cebi S, Kahraman C (2018) A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf Sci 103:124–136. https://doi.org/10.1016/j.ssci.2017.10.025

    Article  Google Scholar 

  49. Fattahi R, Khalilzadeh M (2018) Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Saf Sci 102:290–300. https://doi.org/10.1016/j.ssci.2017.10.018

    Article  Google Scholar 

  50. Koulinas GK, Marhavilas PK, Demesouka OE, Vavatsikos AP, Koulouriotis DE (2019) Risk analysis and assessment in the worksites using the fuzzy-analytical hierarchy process and a quantitative technique—a case study for the Greek construction sector. Saf Sci 112:96–104. https://doi.org/10.1016/j.ssci.2018.10.017

    Article  Google Scholar 

  51. Opricovic S, Tzeng GH (2007) Extended VIKOR method in comparison with outranking methods. Eur J Oper Res 178(2):514–529. https://doi.org/10.1016/j.ejor.2006.01.020

    Article  MATH  Google Scholar 

  52. Mohsen O, Fereshteh N (2017) An extended VIKOR method based on entropy measure for the failure modes risk assessment—a case study of the geothermal power plant (GPP). Saf Sci 92:160–172. https://doi.org/10.1016/j.ssci.2016.10.006

    Article  Google Scholar 

  53. İnan UH, Gül S, Yılmaz H (2017) A multiple attribute decision model to compare the firms’ occupational health and safety management perspectives. Saf Sci 91:221–231. https://doi.org/10.1016/j.ssci.2016.08.018

    Article  Google Scholar 

  54. Kaya T, Kahraman C (2011) Fuzzy multiple criteria forestry decision making based on an integrated VIKOR and AHP approach. Expert Syst Appl 38(6):7326–7333. https://doi.org/10.1016/j.eswa.2010.12.003

    Article  Google Scholar 

  55. Chang SC, Lin CF, Wu WM (2016) The features and marketability of certificates for occupational safety and health management in Taiwan. Saf Sci 85:77–87. https://doi.org/10.1016/j.ssci.2015.12.024

    Article  Google Scholar 

  56. Liang D, Zhang Y, Xu Z, Jamaldeen A (2019) Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry. Appl Soft Comput J 78:583–594. https://doi.org/10.1016/j.asoc.2019.03.006

    Article  Google Scholar 

  57. Liu HC, You JX, You XY, Shan MM (2015) A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl Soft Comput J 28:579–588. https://doi.org/10.1016/j.asoc.2014.11.036

    Article  Google Scholar 

  58. Wu Z, Ahmad J, Xu J (2016) A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Appl Soft Comput J 42:314–324. https://doi.org/10.1016/j.asoc.2016.02.007

    Article  Google Scholar 

  59. Başer O (2020) In which cities is the risk of coronavirus spreading higher?

  60. Baser O (2020) Population density index and its use for distribution of covid-19: A case study using Turkish data. MPRA Pap., Apr. 2020.

  61. Tharumia Jagadeesan C, Wirtz VJ (2021) Geographical accessibility of medicines: a systematic literature review of pharmacy mapping. J Pharm Policy Pract 14(1):28. https://doi.org/10.1186/s40545-020-00291-7

    Article  Google Scholar 

  62. Vass C, Gray E, Payne K (2016) Discrete choice experiments of pharmacy services: a systematic review. Int J Clin Pharm 38:620–630. https://doi.org/10.1007/s11096-015-0221-1

    Article  Google Scholar 

  63. Curtiss FR, Fry RN, Avey SG Framework for pharmacy services quality ımprovement-a bridge to cross the quality chasm part I. The Opportunity and the Tool.

  64. Shawahna R (2020) Quality ındicators of pharmaceutical care for ıntegrative healthcare: a scoping review of ındicators developed using the delphi technique. Evidence-based Complement. Altern. Med.. https://doi.org/10.1155/2020/9131850

  65. Yaman TT, Akkartal GR (2020) Warehouse location selection decision systems for medical sector. İn Proceedings of the world conference on smart trends in systems, security and sustainability, WS4 2020, pp 208–213. https://doi.org/10.1109/worlds450073.2020.9210406

  66. Yildiz A, Soner Kara S, Özkan C, Teknik Üniversitesi Y, Fakültesi M, Mühendisliği Bölümü E (2021) Sağlık kurumlarının ve eczanelerin taleplerine yönelik ecza deposu yer seçimi problemi Pharmaceutical warehouse site selection problem considering the demands of medical ınstitutions and pharmacies. 11(2): 452–465. https://doi.org/10.17714/gumusfenbil.676376

  67. İ. Tolga Çoşkun et al (2021) “Eczane Kuruluş Yeri Seçimini Etkileyen Faktörlerin Çok Kriterli Karar Verme Tekniklerinden WINGS ve DEMATEL Yöntemleriyle Değerlendirilmesi. Eskişehir Osmangazi Üniversitesi İİBF Derg, 17(2)2:295–310. https://doi.org/10.17153/oguiibf.1008982.

  68. Celik E, Bilisik ON, Erdogan M, Gumus AT, Baracli H (2013) An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transp Res Part E Logist Transp Rev 58:28–51

    Article  Google Scholar 

  69. Bilişik ÖN, Erdoğan M, Kaya İ, Baraçlı H (2013) A hybrid fuzzy methodology to evaluate customer satisfaction in a public transportation system for Istanbul. Total Qual Manag Bus Excell 24(9–10):1141–1159. https://doi.org/10.1080/14783363.2013.809942

    Article  Google Scholar 

  70. Skulmoski GJ, Hartman FT, Krahn J (2007) The delphi method for graduate research. J Inf Technol Educ Res 6:001–021. https://doi.org/10.28945/199

    Article  Google Scholar 

  71. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MathSciNet  MATH  Google Scholar 

  72. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):n/a-n/a. https://doi.org/10.1002/int.20418

    Article  Google Scholar 

  73. R. R. Yager, “Pythagorean fuzzy subsets,” in Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, 2013, pp. 57–61, doi: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375.

  74. F. Kutlu Gündoǧdu and C. Kahraman, “Spherical fuzzy sets and spherical fuzzy TOPSIS method,” J. Intell. Fuzzy Syst., vol. 36, no. 1, pp. 337–352, Jan. 2019, doi: https://doi.org/10.3233/JIFS-181401.

  75. F. Kutlu Gündoğdu and C. Kahraman, “A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets,” Eng. Appl. Artif. Intell., vol. 85, pp. 307–323, Oct. 2019, doi: https://doi.org/10.1016/j.engappai.2019.06.003.

  76. Kutlu Gündoǧdu F, Kahraman C (2019) “A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. J Intell Fuzzy Syst 37(1):1197–1211. https://doi.org/10.3233/JIFS-182651

    Article  Google Scholar 

  77. Szmidt E, Kacprzyk J (2000) Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst 114(3):505–518. https://doi.org/10.1016/S0165-0114(98)00244-9

    Article  MathSciNet  MATH  Google Scholar 

  78. Xu Z, Zhang X (2013) Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowl Based Syst 52:53–64. https://doi.org/10.1016/j.knosys.2013.05.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Erdoğan.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

Ethics committee approval is not required.

Consent for publication

The authors confirm that the final version of the manuscript has been reviewed, approved and consented for publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Preliminaries for spherical fuzzy sets

Intuitionistic fuzzy sets were suggested by Atanassov in 1986 to address allocating non-membership degrees [71]. The fuzzy sets extensions where a single element can have a number of values for the membership degree are named Hesitant Fuzzy Sets developed by Torra [72]. With the development of intuitionistic type-2 fuzzy sets, Pythagorean fuzzy sets were introduced in 2013 by Yager [73]. For the SFSs, at the time that the squared sum of membership, non-membership and hesitancy parameters can be between 0 and 1, each of them can be separately determined between 0 and 1 to ensure that the sum of squares equals at most 1 [74, 75]. SFSs definition and spherical distance measurement, arithmetic operations, aggregation operators and defuzzification operations are given as in the following definitions [13, 14, 75, 76].

Definition 1

Let U is a universe of discourse. By a spherical fuzzy set (SFS) of U, we shall understand a set of the form as defined follows [74]:

$$\tilde{A}_{s} = \left\{ {\left\langle {(\mu_{{\tilde{A}_{S} }} (u),\upsilon_{{\tilde{A}_{S} }} (u),\pi_{{\tilde{A}_{S} }} (u))} \right\rangle :u \in U} \right\}$$
(1)

where \(\mu_{{\tilde{A}_{s} }} {,}\upsilon_{{\tilde{A}_{s} }} ,\pi_{{\tilde{A}_{s} }} :U \to [0,1]\,[0,1]\) are the functions that quantify the degree of membership, non-membership, and hesitancy of each \(u \in U\) with respect to \(\tilde{A}_{s}\), respectively. They must satisfy the condition

$$\mu_{{\tilde{A}_{s} }}^{2} (u) + \upsilon_{{\tilde{A}_{s} }}^{2} (u) + \pi_{{\tilde{A}_{s} }}^{2} (u) \in [0,1]{\text{ for all }}u \in U.$$
(2)

In what follows, we shall denote a given SFS, by \(\tilde{A}_{s} = (\mu_{{\tilde{A}_{s} }}^{2} ,\upsilon_{{\tilde{A}_{s} }}^{2} \pi_{{\tilde{A}_{s} }}^{2} )\), for short.

The numbers \(\mu_{{\tilde{A}_{s} }}^{2} ,\upsilon_{{\tilde{A}_{s} }}^{2}\) and \(\pi_{{\tilde{A}_{s} }}^{2}\) are the degree of membership, nonmembership and hesitancy of u to \(\tilde{A}_{s}\) for each u, respectively.

Definition 2

The main arithmetic operations can be defined as follows [74]:

Addition;

$$\tilde{A}_{s} \oplus \tilde{B}_{s} = \left\{ {\left( {\mu_{{\tilde{A}_{s} }}^{2} + \mu_{{\tilde{B}_{s} }}^{2} - \mu_{{\tilde{A}_{s} }}^{2} \mu_{{\tilde{B}_{s} }}^{2} } \right)^{1/2} ,\upsilon_{{\tilde{A}_{s} }} \upsilon_{{\tilde{B}_{s} }} ,\left( {\left( {1 - \mu_{{\tilde{B}_{s} }}^{2} } \right)\pi_{{\tilde{A}_{s} }}^{2} + \left( {1 - \mu_{{\tilde{A}_{s} }}^{2} } \right)\pi_{{\tilde{B}_{s} }}^{2} - \pi_{{\tilde{A}_{s} }}^{2} \pi_{{\tilde{B}_{s} }}^{2} } \right)^{1/2} } \right\}$$
(3)

Multiplication;

$$\tilde{A}_{s} \otimes \tilde{B}_{s} = \left\{ {\mu_{{\tilde{A}_{s} }} \mu_{{\tilde{B}_{s} }} ,\left( {\upsilon_{{\tilde{A}_{s} }}^{2} + \upsilon_{{\tilde{B}_{s} }}^{2} - \upsilon_{{\tilde{A}_{s} }}^{2} \upsilon_{{\tilde{B}_{s} }}^{2} } \right)^{1/2} ,\left( {\left( {1 - \upsilon_{{\tilde{B}_{s} }}^{2} } \right)\pi_{{\tilde{A}_{s} }}^{2} + \left( {1 - \upsilon_{{\tilde{A}_{s} }}^{2} } \right)\pi_{{\tilde{B}_{s} }}^{2} - \pi_{{\tilde{A}_{s} }}^{2} \pi_{{\tilde{B}_{s} }}^{2} } \right)^{1/2} } \right\}$$
(4)

Multiplication by a scalar; λ > 0

$$\lambda .\tilde{A}_{s} = \left\{ {\left( {1 - \left( {1 - \mu_{{\tilde{A}_{s} }}^{2} } \right)^{\lambda } } \right)^{1/2} ,\upsilon_{{\tilde{A}_{s} }}^{\lambda } ,\left( {\left( {1 - \mu_{{\tilde{A}_{s} }}^{2} } \right)^{\lambda } - \left( {1 - \mu_{{\tilde{A}_{s} }}^{2} - \pi_{{\tilde{A}_{s} }}^{2} } \right)^{\lambda } } \right)^{1/2} } \right\}$$
(5)

λ. Power of \(\tilde{A}_{s}\); λ > 0

$$\tilde{A}_{S}^{\lambda } = \left\{ {\mu_{{\tilde{A}_{s} }}^{\lambda } ,\left( {1 - \left( {1 - \upsilon_{{\tilde{A}_{s} }}^{2} } \right)^{\lambda } } \right)^{1/2} ,\left( {\left( {1 - \upsilon_{{\tilde{A}_{s} }}^{2} } \right)^{\lambda } - \left( {1 - \upsilon_{{\tilde{A}_{s} }}^{2} - \pi_{{\tilde{A}_{s} }}^{2} } \right)^{\lambda } } \right)^{1/2} } \right\}$$
(6)

Definition 3

Let \(\tilde{A}_{s}\) and \(\tilde{B}_{s}\) be two SFSs. The following identities hold for every \(\lambda ,\lambda_{1} ,\lambda_{2} > 0\) [16].

$${\text{i}}{.}\quad \tilde{A}_{s} \oplus \tilde{B}_{s} = \tilde{B}_{s} \oplus \tilde{A}_{s}$$
(7)
$${\text{ii}}{.}\quad \tilde{A}_{s} \otimes \tilde{B}_{s} = \tilde{B}_{s} \otimes \tilde{A}_{s}$$
(8)
$${\text{iii}}{.}\quad \lambda (\tilde{A}_{s} \oplus \tilde{B}_{s} ) = \lambda \tilde{A}_{s} \oplus \lambda \tilde{B}_{s}$$
(9)
$${\text{iv}}{.}\quad \lambda_{1} \tilde{A}_{s} \oplus \lambda_{2} \tilde{A}_{s} = (\lambda_{1} + \lambda_{2} )\tilde{A}_{s}$$
(10)
$${\text{v}}{.}\quad (\tilde{A}_{s} \otimes \tilde{B}_{s} )^{\lambda } = \tilde{A}_{s}^{\lambda } \otimes \tilde{B}_{s}^{\lambda }$$
(11)
$${\text{vi}}{.}\quad \tilde{A}_{s}^{{\lambda_{1} }} \otimes \tilde{A}_{s}^{{\lambda_{2} }} = \tilde{A}_{s}^{{\lambda_{1} + \lambda_{2} }}$$
(12)

Definition 4

Let \(w = (w_{1} ,...,w_{n} )\) be a weighted list of weights, i.e., \(w_{i} \in [0,1]\) for all i = 1,…,n with \(\sum\nolimits_{i = 1}^{n} {w_{i} = 1.}\) The Spherical Weighted Arithmetic Mean (SWAM) of the SFSs \(\tilde{A}_{{s_{1} }} ,\tilde{A}_{{s_{2} }} ,...,\tilde{A}_{{s_{n} }}\) related to \(w\) is described as [74]:

$$\begin{gathered} SWAM_{w} (\tilde{A}_{{s_{1} }} ,\tilde{A}_{{s_{2} }} ,...,\tilde{A}_{{s_{n} }} ) = w_{1} \tilde{A}_{{s_{1} }} + w_{2} \tilde{A}_{{s_{2} }} + ... + w_{n} \tilde{A}_{{s_{n} }} \hfill \\ { = }\left\{ {\left[ {1 - \prod\limits_{i = 1}^{n} {(1 - \mu_{{\tilde{A}_{{S_{i} }} }}^{2} )^{{w_{i} }} } } \right]^{1/2} ,\prod\limits_{i = 1}^{n} {\upsilon_{{\tilde{A}_{{S_{i} }} }}^{{w_{i} }} ,\left[ {\prod\limits_{i = 1}^{n} {(1 - \mu_{{\tilde{A}_{{S_{i} }} }}^{2} )^{{w_{i} }} } - \prod\limits_{i = 1}^{n} {(1 - \mu_{{\tilde{A}_{{S_{i} }} }}^{2} - \pi_{{\tilde{A}_{{S_{i} }} }}^{2} )^{{w_{i} }} } } \right]}^{1/2} } \right\} \hfill \\ \end{gathered}$$
(13)

Definition 5

Spherical Weighted Geometric Mean (SWGM) in reference to \(w = (w_{1} ,...,w_{n} ); \, w_{i} \in [0,1];\)\(\sum\nolimits_{i = 1}^{n} {w_{i} = 1,}\) SWGM is described as [74];

$$\begin{gathered} SWGM_{w} (\tilde{A}_{{s_{1} }} ,\tilde{A}_{{s_{2} }} ,...,\tilde{A}_{{s_{n} }} ) = \tilde{A}_{{s_{1} }}^{{w_{1} }} + \tilde{A}_{{s_{1} }}^{{w_{2} }} + ... + \tilde{A}_{{s_{n} }}^{{w_{n} }} \hfill \\ { = }\left\{ {\prod\limits_{i = 1}^{n} {\mu_{{\tilde{A}_{{S_{i} }} }}^{{w_{i} }} ,} \left[ {1 - \prod\limits_{i = 1}^{n} {(1 - \upsilon_{{\tilde{A}_{{S_{i} }} }}^{2} )^{{w_{i} }} } } \right]^{1/2} ,\left[ {\prod\limits_{i = 1}^{n} {(1 - \upsilon_{{\tilde{A}_{{S_{i} }} }}^{2} )^{{w_{i} }} - } \prod\limits_{i = 1}^{n} {(1 - \upsilon_{{\tilde{A}_{{S_{i} }} }}^{2} - \pi_{{\tilde{A}_{{S_{i} }} }}^{2} )^{{w_{i} }} } } \right]^{1/2} } \right\} \hfill \\ \end{gathered}$$
(14)

Spherical fuzzy AHP

The steps of the SF-AHP method are summarized as follows [13]:

Step 1 The hierarchical structure is constructed. Criteria and alternatives are defined. Criteria are shown as \(C_{j} (j = 1,2,...,n)\) and alternatives are shown as \(X_{i} (i = 1,2,....,m)\) where \(m,n \in {\mathbb{N}}\) [13]. The main criteria and sub-criteria considered within the scope of this study and the pharmacies in the determined region as alternatives are shown in figure that placed in real case analysis section.

Step 2 Decision-makers are asked to construct spherical fuzzy judgment matrices using the linguistic terms in Table 11 for pairwise comparisons of the criteria. Equation (15) and Eq. (16) are also used to calculate the score indices (SIs).

$$SI = \sqrt {\left| {100*\left[ {\left( {\mu_{{\tilde{A}_{s} }} - \pi_{{\tilde{A}_{s} }} } \right)^{2} - \left( {\upsilon_{{\tilde{A}_{s} }} - \pi_{{\tilde{A}_{s} }} } \right)^{2} } \right]} \right|}$$
(15)

and

$$\frac{1}{SI} = \frac{1}{{\sqrt {\left| {100*\left[ {\left( {\mu_{{\tilde{A}_{s} }} - \pi_{{\tilde{A}_{s} }} } \right)^{2} - \left( {\upsilon_{{\tilde{A}_{s} }} - \pi_{{\tilde{A}_{s} }} } \right)^{2} } \right]} \right|} }}$$
(16)

Step 3 The consistency of all pairwise comparison matrices has been checked. For this purpose, linguistic terms in the pairwise comparison matrices are converted to their corresponding score index in Table 11.

Table 11 Linguistic terms set for pairwise comparisons

The consistency ratio is calculated by using Eqs. (1718). If the consistency ratio (CR) is smaller than 0.1, then the pairwise comparison matrices are consistent.

$$CI = \frac{{\lambda_{\max } - n}}{n - 1}$$
(17)
$$CR = \frac{CI}{{RI}}$$
(18)

where the n is the number of criteria (i = 1,…,n) that are compared and RI is the random index which varies randomly according to the criteria/alternatives number.

Step 4 Once all matrices are determined consistently, the evaluations for each decision-maker using the SWGM operator given in Definition 5 are aggregated [13]. In this step, w corresponds to the weight of the decision-maker.

Step 5 The spherical fuzzy local weights of criteria are determined by applying SWAM operator given in Definition 4 concerning each criterion. The method of weighted arithmetic mean is applied to calculate the spherical fuzzy weights. In this step, w corresponds to 1/n (n = number of criteria).

Step 6 The hierarchical layer sequencing to obtain global spherical fuzzy weights of sub-criteria is created. The spherical fuzzy weights at each level are aggregated and this calculation is performed from the bottom level (sub-criteria) to the top level (goal) [13]. The researcher can choose two different options at this stage. The first one is to defuzzify the weights of criteria by utilizing the score function (S) in Eq. (19). After that, normalize the weights by applying Eq. (20) and use spherical fuzzy multiplication given in Eq. (21).

$$S(\tilde{w}_{j}^{s} ) = \sqrt {\left| {100*\left[ {\left( {3\mu_{{\tilde{A}_{s} }} - \frac{{\pi_{{\tilde{A}_{s} }} }}{2}} \right)^{2} - \left( {\frac{{\upsilon_{{\tilde{A}_{s} }} }}{2} - \pi_{{\tilde{A}_{s} }} } \right)^{2} } \right]} \right|}$$
(19)
$$\overline{w}_{j}^{s} = \frac{{S(\tilde{w}_{j}^{s} )}}{{\sum\nolimits_{j = 1}^{n} {S(\tilde{w}_{j}^{s} )} }}$$
(20)
$$\tilde{A}_{{S_{ij} }} = \overline{w}_{j}^{s} .\tilde{A}_{{S_{i} }} = \left\langle {\left( {1 - (1 - \mu_{{\tilde{A}_{S} }}^{2} )^{{\overline{w}_{j}^{s} }} } \right)^{1/2} ,\upsilon_{{\tilde{A}_{S} }}^{{\overline{w}_{j}^{s} }} ,\left( {(1 - \mu_{{\tilde{A}_{S} }}^{2} )^{{\overline{w}_{j}^{s} }} - (1 - \mu_{{\tilde{A}_{S} }}^{2} - \pi_{{\tilde{A}_{S} }}^{2} )^{{\overline{w}_{j}^{s} }} } \right)^{1/2} } \right\rangle \, \forall i$$
(21)

where \((i = 1,2,....,m)\).

The value of the final spherical fuzzy AHP score \((\tilde{F})\), for each alternative Ai, is achieved by applying the spherical fuzzy arithmetic addition over each global preference weight as presented in Eq. (22).

$$\tilde{F} = \sum\limits_{j = 1}^{n} {\tilde{A}_{{S_{ij} }} = \tilde{A}_{{S_{i1} }} \oplus \tilde{A}_{{S_{i2} }} \oplus ... \oplus \tilde{A}_{{S_{in} }} } \, \forall i$$

where \((i = 1,2,....,m)\).i.e.,

$$\tilde{A}_{{S_{11} }} \oplus \tilde{A}_{{S_{12} }} = \left\langle {\left( {\mu_{{\tilde{A}_{{S_{11} }} }}^{2} + \mu_{{\tilde{A}_{{S_{12} }} }}^{2} - \mu_{{\tilde{A}_{{S_{11} }} }}^{2} \mu_{{\tilde{A}_{{S_{12} }} }}^{2} } \right)^{1/2} ,\upsilon_{{\tilde{A}_{{S_{11} }} }} \upsilon_{{\tilde{A}_{{S_{12} }} }} ,\left( {(1 - \mu_{{\tilde{A}_{{S_{12} }} }}^{2} )\pi_{{A_{{S_{11} }} }}^{2} + (1 - \mu_{{\tilde{A}_{{S_{11} }} }}^{2} )\pi_{{A_{{S_{12} }} }}^{2} - \pi_{{A_{{S_{11} }} }}^{2} \pi_{{A_{{S_{12} }} }}^{2} } \right)^{1/2} } \right\rangle$$
(22)

The other option is to keep on without defuzzification. At that, spherical fuzzy global preference weights are calculated by applying Eq. (23), which means multiplicating the main criteria weights and corresponding sub-criteria weights [13].

$$\prod\limits_{j = 1}^{n} {\tilde{A}_{{S_{ij} }} = } \tilde{A}_{{S_{i1} }} \otimes \tilde{A}_{{S_{i2} }} \otimes ... \otimes \tilde{A}_{{S_{in} }} \, \forall i$$

where \((i = 1,2,....,m)\).i.e.,

$$\tilde{A}_{{S_{11} }} \otimes \tilde{A}_{{S_{12} }} = \left\langle {\mu_{{\tilde{A}_{{S_{11} }} }} \mu_{{\tilde{A}_{{S_{12} }} }} ,\left( {\upsilon_{{\tilde{A}_{{S_{11} }} }}^{2} + \upsilon_{{\tilde{A}_{{S_{12} }} }}^{2} - \upsilon_{{\tilde{A}_{{S_{11} }} }}^{2} \upsilon_{{\tilde{A}_{{S_{12} }} }}^{2} } \right)^{1/2} ,\left( {(1 - \upsilon_{{\tilde{A}_{{S_{12} }} }}^{2} )\pi_{{\tilde{A}_{{S_{11} }} }}^{2} + (1 - \upsilon_{{\tilde{A}_{{S_{11} }} }}^{2} )\pi_{{\tilde{A}_{{S_{12} }} }}^{2} - \pi_{{\tilde{A}_{{S_{11} }} }}^{2} \pi_{{\tilde{A}_{{S_{12} }} }}^{2} } \right)^{1/2} } \right\rangle$$
(23)

In this paper, we adopted the full fuzzy approach in calculating the fuzzy spherical weights of local and global weights of the criteria to reflect the uncertainty better in the decision-making process.

Spherical fuzzy VIKOR

After determining the weights of main criteria and sub-criteria, the spherical fuzzy VIKOR method steps [76] are implemented to obtain the ranking of the alternatives.

Step 7 Decision-makers are asked to make criteria-alternative evaluations using the linguistic terms presented in Table 12.

Table 12 Linguistic Terms Set for Criteria-Alternative Evaluations

Step 8 The spherical fuzzy decision matrix based on the opinions of decision-makers is established provided through consensus. The evaluation values of alternative \(X_{i} (i = 1,2,....,m)\) with respect to the criterion \(C_{j} (j = 1,2,...,n)\) by \(C_{j} (\tilde{X}_{i} ) = (\mu_{ij} ,\upsilon_{ij} ,\pi_{ij} )\) and \(\tilde{D} = (C_{j} (\tilde{X}_{i} ))_{mxn}\) is a spherical fuzzy decision matrix. For an MCDM problem with SFS, a decision matrix \(\tilde{D} = (C_{j} (\tilde{X}_{i} ))_{mxn}\) should be produced as in Eq. (24).

$$\tilde{D} = (C_{j} (\tilde{X}_{i} ))_{mxn} = \left( \begin{gathered} (\mu_{11} ,\upsilon_{11} ,\pi_{11} ) \, (\mu_{12} ,\upsilon_{12} ,\pi_{12} ) \, ... \, (\mu_{1n} ,\upsilon_{1n} ,\pi_{1n} ) \hfill \\ (\mu_{21} ,\upsilon_{21} ,\pi_{21} ) \, (\mu_{22} ,\upsilon_{22} ,\pi_{22} ) \, ... \, (\mu_{2n} ,\upsilon_{2n} ,\pi_{2n} ) \hfill \\ \, :{ : }...{ :} \hfill \\ \, :{ : }...{ :} \hfill \\ (\mu_{m1} ,\upsilon_{m1} ,\pi_{m1} ) \, (\mu_{m2} ,\upsilon_{m2} ,\pi_{m2} ) \, (\mu_{mn} ,\upsilon_{mn} ,\pi_{mn} ) \hfill \\ \end{gathered} \right)$$
(24)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\).

Step 9 The aggregated decision matrix is defuzzified by using the score value function by using Eq. (25).

$$Score(C_{j} (\tilde{X}_{i} )) = (2\mu_{ij} - \pi_{ij} )^{2} - (\upsilon_{ij} - \pi_{ij} )^{2}$$
(25)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\).

Step 10 The Spherical Fuzzy Positive Ideal Solution (SF-PIS) and the Spherical Fuzzy Negative Ideal Solution (SF-NIS) are defined derived the score values achieved in Step 9. Equation (26) is applied to obtain the maximum scores in the decision matrix for the SF-PIS. The respective SF numbers are calculated as in Eq. (27) based upon the crisp maximum scores.

$${X}^{*}=\left\{\left({C}_{j},\underset{i=1,\dots ,m}{max} \left\{\mathrm{Score}\left({C}_{j}\left({\widetilde{X}}_{i}\right)\right)\right\}\right):j=1,\dots ,n\right\}$$
(26)
$$\tilde{X}^{*} = \left\{ {\left\langle {C_{1} ,(\mu_{1}^{*} ,\upsilon_{1}^{*} ,\pi_{1}^{*} )} \right\rangle ,\left\langle {C_{2} ,(\mu_{2}^{*} ,\upsilon_{2}^{*} ,\pi_{2}^{*} )} \right\rangle ,...,\left\langle {C_{n} ,(\mu_{n}^{*} ,\upsilon_{n}^{*} ,\pi_{n}^{*} )} \right\rangle } \right\}$$
(27)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\).

Equation (28) is utilized to determine the minimum scores in the decision matrix for the SF-NIS. Based upon the crisp minimum scores, the respective SF numbers are defined as in Eq. (29).

$$X^{ - } = \left\{ {C_{j} ,\mathop {\mathop {\min }\limits_{i} < Score(C_{j} (\tilde{X}_{i} ) > |j = 1,2,...,n)}\limits_{{}} } \right\}$$
(28)
$$\tilde{X}^{ - } = \left\{ {\left\langle {C_{1} ,(\mu_{1}^{ - } ,\upsilon_{1}^{ - } ,\pi_{1}^{ - } )} \right\rangle ,\left\langle {C_{2} ,(\mu_{2}^{ - } ,\upsilon_{2}^{ - } ,\pi_{2}^{ - } )} \right\rangle ,...,\left\langle {C_{n} ,(\mu_{n}^{ - } ,\upsilon_{n}^{ - } ,\pi_{n}^{ - } )} \right\rangle } \right\}$$
(29)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\).

Step 11 Maximum group utility and a minimum individual regret of an opponent strategy values, which are shown as Si and Ri, are calculated by the relations according to partial fuzzy and full fuzzy approaches as in Eq. (30) and Eq. (31), respectively. For partial fuzzy approach, spherical fuzzy weights which are calculated with SF-AHP method are defuzzified as in Eq. (19) and normalized with Eq. (20)

$$S_{i} = \sum\limits_{j = 1}^{n} {\overline{w}_{j}^{s} .D = \sum\limits_{j = 1}^{n} {\overline{w}_{j}^{s} .\frac{{D(\tilde{X}_{ij} ,\tilde{X}_{j}^{*} )}}{{D(\tilde{X}_{j}^{ - } ,\tilde{X}_{j}^{*} )}}} }$$
(30)
$$R_{i} = \mathop {\max }\limits_{j} (\overline{w}_{j}^{s} .D) = \mathop {\max }\limits_{j} \left( {\overline{w}_{j}^{s} .\frac{{D(\tilde{X}_{ij} ,\tilde{X}_{j}^{*} )}}{{D(\tilde{X}_{j}^{ - } ,\tilde{X}_{j}^{*} )}}} \right)$$
(31)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\).

On the other hand, spherical fuzzy weights calculated with SF-AHP method can be utilized with the full fuzzy approach as in Eq. (32). In this paper, we continued with the fuzzy approach as shown in the following equation.

$$D.\tilde{w}_{j}^{s} = \left\{ {\left( {1 - \left( {1 - \mu_{{\overline{w}_{j}^{s} }}^{2} } \right)^{D} } \right)^{1/2} ,\upsilon_{{\overline{w}_{j}^{s} }}^{\lambda } ,\left( {\left( {1 - \mu_{{\overline{w}_{j}^{s} }}^{2} } \right)^{D} - \left( {1 - \mu_{{\overline{w}_{j}^{s} }}^{2} - \pi_{{\overline{w}_{j}^{s} }}^{2} } \right)^{D} } \right)^{1/2} } \right\}$$
(32)

where \((j = 1,2,...,n)\).

There are three possible distance equations to calculate the distance in Eq. (32). Euclidean distance (Eq. (33) and Eq. (34)), Xu and Zhang’s distance (Eq. (35) and Eq. (36)) and spherical distance (Eq. (37) and Eq. (38)) can be applied [14, 77, 78].

$$D_{E} (\tilde{X}_{ij} ,\tilde{X}_{j}^{*} ) = \sqrt {\left( {\left( {\mu_{{\tilde{X}_{ij} }} - \mu_{{\tilde{X}_{j}^{*} }} } \right)^{2} + \left( {\upsilon_{{\tilde{X}_{ij} }} - \upsilon_{{\tilde{X}_{j}^{*} }} } \right)^{2} + \left( {\pi_{{\tilde{X}_{ij} }} - \pi_{{\tilde{X}_{j}^{*} }} } \right)^{2} } \right)}$$
(33)
$$D_{E} (\tilde{X}_{j}^{ - } ,\tilde{X}_{j}^{*} ) = \sqrt {\left( {\left( {\mu_{{\tilde{X}_{j}^{ - } }} - \mu_{{\tilde{X}_{j}^{*} }} } \right)^{2} + \left( {\upsilon_{{\tilde{X}_{j}^{ - } }} - \upsilon_{{\tilde{X}_{j}^{*} }} } \right)^{2} + \left( {\pi_{{\tilde{X}_{j}^{ - } }} - \pi_{{\tilde{X}_{j}^{*} }} } \right)^{2} } \right)}$$
(34)
$$D_{XZ} (\tilde{X}_{ij} ,\tilde{X}_{j}^{*} ) = \frac{1}{2}\left( {\left| {\mu_{{\tilde{X}_{ij} }}^{2} - \mu_{{\tilde{X}_{j}^{*} }}^{2} } \right| + \left| {\upsilon_{{\tilde{X}_{ij} }}^{2} - \upsilon_{{\tilde{X}_{j}^{*} }}^{2} } \right| + \left| {\pi_{{\tilde{X}_{ij} }}^{2} - \pi_{{\tilde{X}_{j}^{*} }}^{2} } \right|} \right)$$
(35)
$$D_{XZ} (\tilde{X}_{j}^{ - } ,\tilde{X}_{j}^{*} ) = \frac{1}{2}\left( {\left| {\mu_{{\tilde{X}_{j}^{ - } }}^{2} - \mu_{{\tilde{X}_{j}^{*} }}^{2} } \right| + \left| {\upsilon_{{\tilde{X}_{j}^{ - } }}^{2} - \upsilon_{{\tilde{X}_{j}^{*} }}^{2} } \right| + \left| {\pi_{{\tilde{X}_{j}^{ - } }}^{2} - \pi_{{\tilde{X}_{j}^{*} }}^{2} } \right|} \right)$$
(36)
$$D_{S} (\tilde{X}_{ij} ,\tilde{X}_{j}^{*} ) = \frac{2}{\pi }\left( {\arccos \left( {\mu_{{\tilde{X}_{ij} }} \mu_{{\tilde{X}_{j}^{*} }} + \upsilon_{{\tilde{X}_{ij} }} \upsilon_{{\tilde{X}_{j}^{*} }} + \pi_{{\tilde{X}_{ij} }} \pi_{{\tilde{X}_{j}^{*} }} } \right)} \right)$$
(37)
$$D_{S} (\tilde{X}_{j}^{ - } ,\tilde{X}_{j}^{*} ) = \frac{2}{\pi }\left( {\arccos \left( {\mu_{{\tilde{X}_{j}^{ - } }} \mu_{{\tilde{X}_{j}^{*} }} + \upsilon_{{\tilde{X}_{j}^{ - } }} \upsilon_{{\tilde{X}_{j}^{*} }} + \pi_{{\tilde{X}_{j}^{ - } }} \pi_{{\tilde{X}_{j}^{*} }} } \right)} \right)$$
(38)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\). Si represents the separation measure of alternative i from the best value, and Ri represents the separation measure of alternative I from the worst value.

\(Score(D.\tilde{w}_{j}^{s} )\) can be calculated by using Eq. (20) and then Si and Ri values can be found as in Eq. (39) and Eq. (40), respectively.

$$S_{i} = \sum\limits_{j = 1}^{n} {Score(D.\tilde{w}_{j}^{s} )}$$
(39)
$$R_{i} = \mathop {\max }\limits_{j} \left( {Score(D.\tilde{w}_{j}^{s} )} \right)$$
(40)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\).

Step 12 \(S^{*} ,S^{ - } ,R^{*} ,R^{ - }\) and \(Q_{i}\) values are calculated based on Eq. (41) and Eq. (42), respectively.

$$\begin{gathered} S^{*} = \mathop {\min }\limits_{i} S_{i} \hfill \\ S^{ - } = \mathop {\max }\limits_{i} S_{i} \hfill \\ R^{*} = \mathop {\min }\limits_{i} R_{i} \hfill \\ R^{ - } = \mathop {\max }\limits_{i} R_{i} \hfill \\ \end{gathered}$$
(41)

where \((j = 1,2,...,n)\) and \((i = 1,2,....,m)\).

$$Q_{i} = \nu \frac{{(S_{i} - S^{*} )}}{{(S^{ - } - S^{*} )}} + (1 - \nu )\frac{{(R_{i} - R^{*} )}}{{(R^{ - } - R^{*} )}}$$
(42)

where \((i = 1,2,....,m)\).

The indices min Si and min Ri are concerned with maximum majority rule and minimum individual regret of an opponent strategy. Additionally, v is presented as the maximum group utility weight strategy and is usually presumed to be 0.5.

Step 13 The best alternative with the minimum of Qi is determined and ranking of the alternatives is obtained. A compromise solution, the alternative (a′) which is ranked the best by the measure Qi (minimum) is proposed if the following two conditions are satisfied:

Condition 1:“Acceptable advantage”:

$$Q(a^{^{\prime\prime}} ) - Q(a^{^{\prime}} ) \ge D(Q)$$
(43)
$$D(Q) = \frac{1}{m - 1}$$
(44)

where a’’ the alternative with the second position in the ranking list by m is the number of alternatives.

Condition 2: “Acceptable stability in decision making”: Alternative a’ must also be the best ranked by S or/and R.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan, M. A fuzzy approach for prioritization of pharmacies to improve mask distribution process during COVID-19 pandemic—a pilot study for İstanbul. Neural Comput & Applic 35, 19783–19804 (2023). https://doi.org/10.1007/s00521-023-08749-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08749-w

Keywords

Navigation