Skip to main content
Log in

A dual decomposition strategy for large-scale multiobjective evolutionary optimization

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multiobjective evolutionary algorithms (MOEAs) have received much attention in multiobjective optimization in recent years due to their practicality. With limited computational resources, most existing MOEAs cannot efficiently solve large-scale multiobjective optimization problems (LSMOPs) that widely exist in the real world. This paper innovatively proposes a dual decomposition strategy (DDS) that can be embedded into many existing MOEAs to improve their performance in solving LSMOPs. Firstly, the outer decomposition uses a sliding window to divide large-scale decision variables into overlapped subsets of small-scale ones. A small-scale multiobjective optimization problem (MOP) is generated every time the sliding window slides. Then, once a small-scale MOP is generated, the inner decomposition immediately creates a set of global direction vectors to transform it into a set of single-objective optimization problems (SOPs). At last, all SOPs are optimized by adopting a block coordinate descent strategy, ensuring the solution’s integrity and improving the algorithm’s performance to some extent. Comparative experiments on benchmark test problems with seven state-of-the-art evolutionary algorithms and a deep learning-based algorithm framework have shown the remarkable efficiency and solution quality of the proposed DDS. Meanwhile, experiments on two real-world problems show that DDS can achieve the best performance beyond at least one order of magnitude with up to 3072 decision variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ponsich A, Jaimes AL, Coello CAC (2012) A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans Evol Comput 17(3):321–344

    Article  Google Scholar 

  2. Gunantara N (2018) A review of multi-objective optimization: methods and its applications. Cogent Eng 5(1):1502242

    Article  Google Scholar 

  3. Ojha M, Singh KP, Chakraborty P, Verma S (2019) A review of multi-objective optimisation and decision making using evolutionary algorithms. Int J Bio Inspir Comput 14(2):69–84

    Article  Google Scholar 

  4. Falcón-Cardona JG, Coello CAC (2020) Indicator-based multi-objective evolutionary algorithms: a comprehensive survey. ACM Comput Surv (CSUR) 53(2):1–35

    Article  Google Scholar 

  5. Drechsler N, Drechsler R, Becker B (1999) Multi-objective optimization in evolutionary algorithms using satisfiability classes. In: International conference on computational intelligence, pp 108–117

  6. Ma X, Yu Y, Li X, Qi Y, Zhu Z (2020) A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 24(4):634–649

    Article  Google Scholar 

  7. Tian Y, Si L, Zhang X, Cheng R, He C, Tan KC, Jin Y (2021) Evolutionary large-scale multi-objective optimization: a survey. ACM Comput Surv (CSUR) 54(8):1–34

    Google Scholar 

  8. Ma X, Liu F, Qi Y, Wang X, Li L, Jiao L, Gong M (2015) A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans Evol Comput 20(2):275–298

    Article  Google Scholar 

  9. Zhang X, Tian Y, Cheng R, Jin Y (2016) A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans Evol Comput 22(1):97–112

    Article  Google Scholar 

  10. Omidvar M, Li X, Yao X (2021) A review of population-based metaheuristics for large-scale black-box global optimization: part B. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2021.3130835

    Article  Google Scholar 

  11. Oldewage ET, Engelbrecht AP, Cleghorn CW (2017) The merits of velocity clamping particle swarm optimisation in high dimensional spaces. In: 2017 IEEE symposium series on computational intelligence, pp 1–8

  12. Deb K, Myburgh C (2017) A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables. Eur J Oper Res 261(2):460–474

    Article  MATH  Google Scholar 

  13. Song A, Yang Q, Chen W-N, Zhang J (2016) A random-based dynamic grouping strategy for large scale multi-objective optimization. In: 2016 IEEE congress on evolutionary computation, pp 468–475

  14. Omidvar MN, Li X, Mei Y, Yao X (2013) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18(3):378–393

    Article  Google Scholar 

  15. Zille H, Ishibuchi H, Mostaghim S, Nojima Y (2017) A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans Evol Comput 22(2):260–275

    Article  Google Scholar 

  16. Mei Y, Li X, Yao X (2013) Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems. IEEE Trans Evol Comput 18(3):435–449

    Article  Google Scholar 

  17. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985–2999

    Article  MATH  Google Scholar 

  18. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  19. Chen W, Weise T, Yang Z, Tang K (2010) Large-scale global optimization using cooperative coevolution with variable interaction learning. In: International conference on parallel problem solving from nature, pp 300–309

  20. Omidvar MN, Li X, Mei Y, Yao X (2013) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18(3):378–393

    Article  Google Scholar 

  21. Li L, He C, Cheng R, Pan L (2021) Large-scale multiobjective optimization via problem decomposition and reformulation. In: 2021 IEEE congress on evolutionary computation, pp 2149–2155

  22. Tian Y, Zheng X, Zhang X, Jin Y (2019) Efficient large-scale multiobjective optimization based on a competitive swarm optimizer. IEEE Trans Cybern 50(8):3696–3708

    Article  Google Scholar 

  23. He C, Cheng R, Yazdani D (2020) Adaptive offspring generation for evolutionary large-scale multiobjective optimization. IEEE Trans Syst Man Cybern 52(2):786–798

    Article  Google Scholar 

  24. Qin S, Sun C, Jin Y, Tan Y, Fieldsend J (2021) Large-scale evolutionary multiobjective optimization assisted by directed sampling. IEEE Trans Evol Comput 25(4):724–738

    Article  Google Scholar 

  25. Wang Z, Hong H, Ye K, Zhang G-E, Jiang M, Tan KC (2021) Manifold interpolation for large-scale multiobjective optimization via generative adversarial networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3113158

    Article  Google Scholar 

  26. Wright SJ (2015) Coordinate descent algorithms. Math Program 151(1):3–34

    Article  MATH  Google Scholar 

  27. Huang P, Zou Z, Xia XG, Liu X, Liao G (2022) A novel dimension-reduced space-time adaptive processing algorithm for spaceborne multichannel surveillance radar systems based on spatial-temporal 2-D sliding window. IEEE Trans Geosci Remote Sens 60:1–21

    Google Scholar 

  28. Koshy P, Babu S, Manoj BS (2020) Sliding window blockchain architecture for internet of things. IEEE Internet Things J 7(4):3338–3348

    Article  Google Scholar 

  29. Jiang D, Liu J, Xu Z, Qin W (2011) Network traffic anomaly detection based on sliding window. In: 2011 International conference on electrical and control engineering, pp 4830–4833

  30. Coello Coello CA, Reyes Sierra M (2004) A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Mexican international conference on artificial intelligence, pp 688–697

  31. Cheng R, Jin Y, Olhofer M (2016) Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans Cybern 47(12):4108–4121

    Article  Google Scholar 

  32. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  33. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science Business Media, Berlin

    MATH  Google Scholar 

  34. Li H, Zhang Q (2008) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  35. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87

    Article  Google Scholar 

  36. Zhang H, Zhou A, Song S, Zhang Q, Gao X-Z, Zhang J (2016) A self-organizing multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20(5):792–806

    Article  Google Scholar 

  37. Liu Z-Z, Wang Y (2019) Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces. IEEE Trans Evol Comput 23(5):870–884

    Article  Google Scholar 

  38. Zhang J, Zhou A, Zhang G (2015) A classification and Pareto domination based multiobjective evolutionary algorithm. In: 2015 IEEE congress on evolutionary computation, pp 2883–2890

  39. Li H, Zhang Q, Deng JI (2016) Biased multiobjective optimization and decomposition algorithm. IEEE Trans Cybern 47(1):52–66

    Article  Google Scholar 

  40. Zhang X-Y, Jiang X-S, Zhang L (2016) A weight vector based multi-objective optimization algorithm with preference. Acta Geosci Sin 44(11):2639

    Google Scholar 

  41. He C, Li L, Tian Y, Zhang X, Cheng R, Jin Y, Yao X (2019) Accelerating large-scale multiobjective optimization via problem reformulation. IEEE Trans Evol Comput 23(6):949–961

    Article  Google Scholar 

  42. Yang X, Zou J, Yang S, Zheng J, Liu Y (2021) A fuzzy decision variables framework for large-scale multiobjective optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2021.3118593

    Article  Google Scholar 

  43. Xu Y, Xu C, Zhang H, Huang L, Liu Y, Nojima Y, Zeng X (2022) A multi-population multi-objective evolutionary algorithm based on the contribution of decision variables to objectives for large-scale multi/many-objective optimization. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2022.3180214

    Article  Google Scholar 

  44. He C, Cheng R, Zhang C, Tian Y, Chen Q, Yao X (2020) Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers. IEEE Trans Evol Comput 24(5):868–881

    Article  Google Scholar 

  45. Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T, Song D (2018) Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1625–1634

  46. Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images

  47. Tian Y, Pan J, Yang S, Zhang X, He S, Jin Y (2022) Imperceptible and sparse adversarial attacks via a dual-population based constrained evolutionary algorithm. IEEE Trans Artif Intell. https://doi.org/10.1109/TAI.2022.316803

    Article  Google Scholar 

  48. Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks In: 2017 IEEE symposium on security and privacy, pp 39–57

  49. Kurakin A, Goodfellow IJ, Bengio S (2018) Adversarial examples in the physical world. In: Artificial intelligence safety and security, pp 99–112

  50. Su J, Vargas DV, Sakurai K (2019) One pixel attack for fooling deep neural networks. IEEE Trans Evol Comput 23(5):828–841

    Article  Google Scholar 

  51. Wiyatno R, Xu A (2018) Maximal jacobian-based saliency map attack. arXiv preprint arXiv:1808.07945

  52. Fan Y, Wu B, Li T, Zhang Y, Li M, Li Z, Yang Y (2020) Sparse adversarial attack via perturbation factorization. In: European conference on computer vision, pp 35–50

  53. Croce F, Hein M (2019) Sparse and imperceivable adversarial attacks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 4724–4732

  54. Ilyas A, Engstrom L, Athalye A, Lin JI (2018) Black-box adversarial attacks with limited queries and information. In: International conference on machine learning, pp 2137–2146

  55. Deng Y, Zhang C, Wang X (2019) A multi-objective examples generation approach to fool the deep neural networks in the black-box scenario. In: 2019 IEEE fourth international conference on data science in cyberspace, pp 92–99

  56. Li G, Wang W, Zhang W, Wang Z, Tu H, You W (2021) Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization. Swarm Evol Comput 62:100843

    Article  Google Scholar 

  57. Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH (2019) Hyperparameter optimization for machine learning models based on Bayesian optimization. J Electron Sci Technol 17(1):26–40

    Google Scholar 

  58. Dai P, Liu K, Feng L, Zhang H, Lee VCS, Son SH, Wu X (2018) Temporal information services in large-scale vehicular networks through evolutionary multi-objective optimization. IEEE Trans Intell Syst 20(1):218–231

    Article  Google Scholar 

  59. Millig GW, Cooper MC (1987) Methodology review: clustering methods. Appl Psychol Meas 11(4):329–354

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the NSFC Research Program (61906010, 62276010) and R&D Program of Beijing Municipal Education Commission (KZ202210005009, KM202010005032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuicui Yang or Junzhong Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, P. & Ji, J. A dual decomposition strategy for large-scale multiobjective evolutionary optimization. Neural Comput & Applic 35, 3767–3788 (2023). https://doi.org/10.1007/s00521-022-08133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08133-0

Keywords

Navigation