Skip to main content
Log in

Similarity based person re-identification for multi-object tracking using deep Siamese network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The process of object tracking involves consistently identifying each instance across frames depending on initial set of object detection(s). Moreover, in multiple object tracking (MOT), the process through tracking-by-detection paradigm consists of performing two common steps consecutively, which are detection and data association. In MOT, it is targeted to associate detections across frames by localizing and identifying all objects of interest. MOT algorithms further keep tracking even the most challenging issues such as revisiting the same view, missing detections, occlusion and temporarily unseen objects, same-appearance objects coexisting in the same frame occur. Hence, re-identification (re-id) appears to be the most powerful tool for assigning the correct identities to each individual instance when aforementioned issues arise. In this work, we propose a similarity-based person re-id framework, called SAT, using a Siamese neural network via shared weights. Once detections are obtained from the backbone SAT applies a Siamese feature extraction model and then we introduce a similarity array for assessing tracklet(s) and detection(s). We examine the performance of SAT on several benchmarks with extensive experiments and statistical tests, where we improve the current state-of-the-art according to commonly used performance metrics with higher accuracy, less ID switches, less false positive and negative rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y et al (2020) Multiplex labeling graph for near-online tracking in crowded scenes. IEEE Internet Things J 7:7892–7902

    Article  Google Scholar 

  2. Yoon Y, Kim D, Song Y, Yoon K, Jeon M (2021) Online multiple pedestrians tracking using deep temporal appearance matching association. Inf Sci 561:326–351

    Article  MathSciNet  Google Scholar 

  3. Cakir S, Cetin A (2021) Visual object tracking using Fourier domain phase information. Signal Image Video Process 16:119–126

    Article  Google Scholar 

  4. Braso G, Lear-Taixe L (2020) Learning a neural solver for multiple object tracking. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 6246–6256

  5. Wojke N, Bewley A, Paulus D (2018) Simple online and realtime tracking with a deep association metric. In: Proceedings of international conference on image processing, ICIP, pp 3645–3649

  6. Chen L, Ai H, Chen R, Zhuang Z (2019) Aggregate tracklet appearance features for multi-object tracking. IEEE Signal Process. Lett. 26:1613–1617

    Article  Google Scholar 

  7. Wu Y et al (2019) Instance-aware representation learning and association for online multi-person tracking. Pattern Recognit. 94:25–34

    Article  Google Scholar 

  8. Ciaparrone G, Luque F, Sanchey L, Tabik S et al (2020) Deep learning in video multi-object tracking: a survey. Neurocomputing 381:61–88

    Article  Google Scholar 

  9. Yang F, Chang X, Sakti S, Wu Y, Nakamura S (2021) Remot: a model-agnostic refinement for multiple object tracking. Image Vis Comput 106:104091

    Article  Google Scholar 

  10. Liu Q, Chu Q, Liu B, Yu N (2020) Gsm: graph similarity model for multi-object tracking. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp 530–536

  11. Xu Y, Cao Y, Zhang Z (2019) Spatial-temporal relation networks for multi-object tracking. In: Proceedings of the IEEE international conference on computer vision, pp 3987–3997

  12. Sadeghian A, Alahi A, Saverse S (2017) Tracking the untrackable: learning to track multiple cues with long-term dependencies. In: Proceedings of the IEEE international conference on computer vision, pp 300–311

  13. Xu Y, Osep A, Ban Y, Horaud R (2020) How to train your deep multi-object tracker. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 6786–6795

  14. Chu Q et al (2017) Online multi-object tracking using cnn-based single object tracker with spatial-temporal attention mechanism. In: Proceedings of the IEEE international conference on computer vision, pp 4846–4855

  15. Yang M, Wu Y, Jia Y (2017) A hybrid data association framework for robust online multi-object tracking. IEEE Trans Image Process 26:5667–5679

    Article  MathSciNet  Google Scholar 

  16. Leal-Taixé L, Milan A, Reid I, Roth S, Schindler K (2015) Motchallenge 2015: towards a benchmark for multi-target tracking. arXiv:1504.01942

  17. Milan A, Leal-Taixé L, Reid I, Roth S, Schindler K (2016) Mot16: a benchmark for multi-object tracking. arXiv:1603.00831

  18. Dendorfer P et al (2020) Mot20: a benchmark for multi object tracking in crowded scenes. arXiv:2003.09003

  19. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The kitti vision benchmark suite

  20. Wang T, Gong S, Zhu X, Wang S (2014) Person re-identification by video ranking. Springer, Berlin, pp 688–703

    Google Scholar 

  21. Milan A, Leal-Taixé L, Reid I, Roth S, Schindler K (2016) Mot16: a benchmark for multi-object tracking. arXiv:1603.00831

  22. Chavdarova T et al (2018) Wildtrack: a multi-camera hd dataset for dense unscripted pedestrian detection, pp 5030–5039

  23. Li M, Zhu X, Gong S (2019) Unsupervised tracklet person re-identification. IEEE Trans Pattern Anal Mach Intell 42(7):1770–1782

    Article  Google Scholar 

  24. Luiten J et al (2020) Hota: a higher order metric for evaluating multi-object tracking. Int J Comput Vis: IJCV 129:548–578

    Article  Google Scholar 

  25. Fabbri M et al (2021) Motsynth: how can synthetic data help pedestrian detection and tracking?, pp 10849–10859

  26. Peng J et al (2020) Tpm: multiple object tracking with tracklet-plane matching. Pattern Recogn 107:107480

    Article  Google Scholar 

  27. Wu Q, Dai P, Chen P et al (2021) Deep adversarial data augmentation with attribute guided for person re-identification. Signal Image Video Process 15:655–662. https://doi.org/10.1007/s11760-019-01523-3

    Article  Google Scholar 

  28. Nousi P, Triantafyllidou D, Tefas A, Pitas I (2020) Re-identification framework for long term visual object tracking based on object detection and classification. Signal Process Image Commun 88:115969

    Article  Google Scholar 

  29. Bergmann P, Meinhardt T, Leal-Taixé L (2019) Tracking without bells and whistles. CoRR arXiv:1903.05625

  30. Yu T, Li D, Yang Y, Timothy H, Xiang T (2019) Robust person re-identification by modelling feature uncertainty. In: Proceedings of the IEEE international conference on computer vision, pp 552–561

  31. Chen A, Biglari-Abhari M, Wang K (2019) Investigating fast re-identification for multi-camera indoor person tracking. Comput Electr Eng 77:273–288

    Article  Google Scholar 

  32. Li Y, Liu L, Zhu L, Zhang H (2021) Person re-identification based on multi-scale feature learning. Knowl Based Syst 228:107281

    Article  Google Scholar 

  33. Lin Y, Xie L, Wu Y, Yan C, Tian Q (2020) Unsupervised person re-identification via softened similarity learning. CoRR arXiv:2004.03547

  34. Mansouri N, Ammar S, Kessentini Y (2021) Re-ranking person re-identification using attributes learning. Neural Comput Appl 33:12827–12843

    Article  Google Scholar 

  35. Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: Proceedings of the IEEE international conference on computer vision, pp 1116–1124

  36. Ristani E, Solera F, Zou RS, Cucchiara R, Tomasi C (2016) Performance measures and a data set for multi-target, multi-camera tracking. In: European conference on computer vision. Springer, Cham, pp 17–35

  37. Liao L et al (2020) A half-precision compressive sensing framework for end-to-end person re-identification. Neural Comput Appl 32(4):1141–1155

    Article  Google Scholar 

  38. Zheng L, Zhang H, Sun S, Chandraker M, Tian Q (2016) Person re-identification in the wild. arXiv:1604.02531

  39. Zhou S, Wang Y, Zhang F, Wu J (2021) Cross-view similarity exploration for unsupervised cross-domain person re-identification. Neural Comput Appl 33(9):4001–4011

    Article  Google Scholar 

  40. Zhu X, Jing X-Y, Ma F, Cheng L, Ren Y (2019) Simultaneous visual-appearance-level and spatial-temporal-level dictionary learning for video-based person re-identification. Neural Comput Appl 31(11):7303–7315

    Article  Google Scholar 

  41. Hirzer M, Beleznai C, Roth PM, Bischof H (2011) Person re-identification by descriptive and discriminative classification. In: Scandinavian conference on image analysis. Springer, Berlin, Heidelberg, pp 91–102

  42. Zhang J et al (2020) Multiple object tracking by flowing and fusing. CoRRarXiv:2001.11180

  43. Wang Y, Weng X, Kitani K (2020) Joint detection and multi-object tracking with graph neural networks. CoRRarXiv:2006.13164

  44. Meinhardt T, Kirillov A, Leal-Taixé L, Feichtenhofer C (2021) Trackformer: Multi-object tracking with transformers. CoRR arXiv:2101.02702

  45. Shuai B, Berneshawi AG, Modolo D, Tighe J (2020) Multi-object tracking with siamese track-rcnn. CoRR arXiv:2004.07786

  46. Meimetis D, Daramouskas I, Perikos I, Hatzilygeroudis I (2021) Real-time multiple object tracking using deep learning methods. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06391-y

    Article  Google Scholar 

  47. Yang K, Song H, Zhang K, Liu Q (2020) Hierarchical attentive siamese network for real-time visual tracking. Neural Comput Appl 32(18):14335–14346

    Article  Google Scholar 

  48. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2411–2418

  49. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  50. Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger K (2019) Convolutional networks with dense connectivity. IEEE Trans Pattern Anal Mach Intll. https://doi.org/10.1109/TPAMI.2019.2918284

    Article  Google Scholar 

  51. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767

  52. Yu L, Zhao Y, Zheng X (2021) Towards real -time object tracking with deep siamese network and layerwise aggregation. Signal Image Video Process 15:1303–1311. https://doi.org/10.1007/s11760-021-01861-1

    Article  Google Scholar 

  53. Li S, Zhao Z, Kou L, Zhou Z, Xia G-S (2020) Siamese networks with distractor-reduction method for long-term visual object tracking. Pattern Recogn 112:107698. https://doi.org/10.1016/j.patcog.2020.107698

    Article  Google Scholar 

  54. Bayraktar E, Boyraz P (2017) Analysis of feature detector and descriptor combinations with a localization experiment for various performance metrics. Turki J Electr Eng Comput Sci 25(3):2444–2454

    Article  Google Scholar 

  55. Bayraktar E, Basarkan ME, Celebi N (2020) A low-cost uav framework towards ornamental plant detection and counting in the wild. ISPRS J Photogramm Remote Sens 167:1–11

    Article  Google Scholar 

  56. Bochkovskiy A, Wang C-Y, Liao H-YM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv:2004.10934

  57. Jocher G et al (2020) ultralytics/yolov5: v3.1—bug fixes and performance improvements. https://doi.org/10.5281/zenodo.4154370

  58. Zheng L et al (2015) Scalable person re-identification: a benchmark, pp 1116–1124. https://doi.org/10.1109/ICCV.2015.133

  59. Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: deep filter pairing neural network for person re-identification, pp 152–159. https://doi.org/10.1109/CVPR.2014.27

  60. Ciaparrone G et al (2020) Deep learning in video multi-object tracking: a survey. Neurocomputing 381:61–88

    Article  Google Scholar 

  61. Khalkhali MB, Vahedian A, Yazdi HS (2019) Multi-target state estimation using interactive kalman filter for multi-vehicle tracking. IEEE Trans Intell Transp Syst 21(3):1131–1144

    Article  Google Scholar 

  62. Li X, Wang K, Wang W, Li Y (2010) A multiple object tracking method using kalman filter. Piscataway, IEEE, pp 1862–1866

    Google Scholar 

  63. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  64. Smal I, Draegestein K, Galjart N, Niessen W, Meijering E (2008) Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis. IEEE Trans Med Imaging 27(6):789–804

    Article  Google Scholar 

  65. Cui Y, Zhang J, He Z, Hu J (2019) Multiple pedestrian tracking by combining particle filter and network flow model. Neurocomputing 351:217–227

    Article  Google Scholar 

  66. Babaee M, Athar A, Rigoll G (2018) Multiple people tracking using hierarchical deep tracklet re-identification. arXiv:1811.04091

  67. Fu Z, Angelini F, Chambers J, Naqvi S (2019) Multi-level cooperative fusion of gm-phd filters for online multiple human tracking. IEEE Trans Multimed 21:2277–2291. https://doi.org/10.1109/TMM.2019.2902480

    Article  Google Scholar 

  68. Xu Y, Osep A, Ban Y, Horaud R, Leal-Taixé L, Alameda-Pineda X (2020) How to train your deep multi-object tracker. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6787–6796

  69. Ren W, Wang X, Tian J, Tang Y, Chan AB (2021) Tracking-by-counting: using network flows on crowd density maps for tracking multiple targets. IEEE Trans Image Process 30:1439–1452. https://doi.org/10.1109/TIP.2020.3044219

    Article  MathSciNet  Google Scholar 

  70. Papakis I, Sarkar A, Karpatne A (2020) Gcnnmatch: graph convolutional neural networks for multi-object tracking via sinkhorn normalization. CoRR arXiv:2010.00067

  71. Wang G, Wang Y, Gu R, Hu W, Hwang J (2021) Split and connect: a universal tracklet booster for multi-object tracking. CoRR arXiv:2105.02426

  72. Dai P et al (2021) Learning a proposal classifier for multiple object tracking. CoRR arXiv:2103.07889

  73. Smeulders AW et al (2013) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468

    Google Scholar 

  74. Valmadre J et al (2021) Local metrics for multi-object tracking. arXiv:2104.02631

  75. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    Article  MathSciNet  Google Scholar 

  76. Luiten J et al (2021) Hota: a higher order metric for evaluating multi-object tracking. Int J Comput Vis 129(2):548–578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Suljagic.

Ethics declarations

Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suljagic, H., Bayraktar, E. & Celebi, N. Similarity based person re-identification for multi-object tracking using deep Siamese network. Neural Comput & Applic 34, 18171–18182 (2022). https://doi.org/10.1007/s00521-022-07456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07456-2

Keywords

Navigation