Skip to main content

Two-stage Object Tracking Based on Similarity Measurement for Fused Features of Positive and Negative Samples

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

Abstract

The tracking algorithm based on Siamese networks cannot change the corresponding templates according to appearance changes of targets. Therefore, taking convolution as a similarity measure finds it difficult to collect background information and discriminate background interferents similar to templates, showing poor tracking robustness. In view of this problem, a two-stage tracking algorithm based on the similarity measure for fused features of positive and negative samples is proposed. In accordance with positive and negative sample libraries established online, a discriminator based on measurement for fused features of positive and negative samples is learned to quadratically discriminate a candidate box of hard sample frames. The tracking accuracy and success rate of the algorithm in the OTB2015 benchmark dataset separately reach 92.4% and 70.7%. In the VOT2018 dataset, the algorithm improves the accuracy by nearly 0.2%, robustness by 4.0% and expected average overlap (EAO) by 2.0% compared with the benchmark network SiamRPN++. In terms of the LaSOT dataset, the algorithm is superior to all algorithms compared. Compared with the basic network, its success rate increases by nearly 3.0%, and the accuracy rises by more than 1.0%. Conclusions: The experimental results in the OTB2015, VOT2018 and LaSOT datasets show that the proposed method has a great improvement in the tracking success rate and robustness compared with algorithms based on Siamese networks and particularly, it performs excellently in the LaSOT dataset with a long sequence, occlusion and large appearance changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550. IEEE (2010)

    Google Scholar 

  2. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018)

    Google Scholar 

  3. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 103–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_7

    Chapter  Google Scholar 

  4. Zhang, L., Gonzalez-Garcia, A., Weijer, J.v.d., Danelljan, M., Khan, F.S.: Learning the model update for Siamese trackers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4010–4019 (2019)

    Google Scholar 

  5. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  6. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Atom: accurate tracking by overlap maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4660–4669 (2019)

    Google Scholar 

  7. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: evolution of Siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)

    Google Scholar 

  8. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: Siamfc++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12549–12556 (2020)

    Google Scholar 

  9. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46

    Chapter  Google Scholar 

  10. Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8126–8135 (2021)

    Google Scholar 

  11. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4021–4029 (2017)

    Google Scholar 

  12. Zhang, Z., Peng, H.: Deeper and wider Siamese networks for real-time visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4591–4600. IEEE (2019)

    Google Scholar 

  13. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: SIAMcar: Siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6269–6277. IEEE (2020)

    Google Scholar 

  14. Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6668–6677. IEEE (2020)

    Google Scholar 

  15. Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: SIAM R-CNN: visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588. IEEE (2020)

    Google Scholar 

  16. Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: Eco: efficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6638–6646. IEEE (2017)

    Google Scholar 

  17. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1763–1771. IEEE (2017)

    Google Scholar 

  18. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

This research was funded by NSFC (No. 62162045, 61866028), Technology Innovation Guidance Program Project (No. 20212BDH81003) and Postgraduate Innovation Special Fund Project (No. YC2021133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1358 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, K., Chu, J., Qin, P. (2022). Two-stage Object Tracking Based on Similarity Measurement for Fused Features of Positive and Negative Samples. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics