Skip to main content

Advertisement

Log in

(1 + PD)-PID cascade controller design for performance betterment of load frequency control in diverse electric power systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In our world of today developing incredibly fast, load frequency control (LFC) is an indispensable and vital element in increasing the standard of living of a country by providing a good quality of electric power. To this end, rapid and notable development has been recorded in LFC area. However, researchers worldwide need for the existence of not only effective but also computationally inexpensive control algorithm considering the limitations and difficulties in practice. Hence, this paper deals with the introduction of (1 + PD)-PID cascade controller to the relevant field. The controller is simple to implement and it connects the output of 1 + PD controller with the input of PID controller where the frequency and tie-line power deviation are applied to the latter controller as feedback signals also, which is the first attempt made in the literature. To discover the most optimistic results, controller gains are tuned concurrently by dragonfly search algorithm (DSA). For the certification purpose of the advocated approach, two-area thermal system with/without governor dead band nonlinearity is considered as test systems initially. Then single/multi-area multi-source power systems with/without a HVDC link are employed for the enriched validation purpose. The results of our proposal are analyzed in comparison with those of other prevalent works, which unveil that despite its simplicity, DSA optimized (1 + PD)-PID cascade strategy delivers better performance than others in terms of smaller values of the chosen objective function and settling time/undershoot/overshoot of the frequency and tie-line power deviations following a step load perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(S\) :

Speed governor regulation parameter

\({T}_{rs}\) :

Hydro turbine speed governor reset time constant

\(B\) :

Frequency bias constant

\({T}_{rh}\) :

Hydro turbine speed governor transient droop time constant

\({T}_{g}\) :

Speed governor time constant

\({T}_{w}\) :

Nominal starting time of water in penstock

\({T}_{t}\) :

Steam turbine time constant

\({c}_{g}\)0:

Gas turbine valve positioner

\({K}_{ps}\) :

Power system gain constant

\({b}_{g}\) :

Gas turbine constant of valve positioner

\({T}_{ps}\) :

Power system time constant

\({X}_{c}\) :

Lead time constant of gas turbine speed governor

\({T}_{12}\) :

Tie line power coefficient

\({Y}_{c}\) :

Lag time constant of gas turbine speed governor

\(\Delta {P}_{ref}\) :

Incremental change in controller output

\({T}_{cr}\) :

Gas turbine combustion reaction time delay

\(\Delta {P}_{g}\) :

Incremental change in governor valve position

\({T}_{f}\) :

Gas turbine fuel time constant

\(\Delta {P}_{t}\) :

Incremental change in turbine output power generation

\({T}_{cd}\) :

Gas turbine compressor discharge volume-time constant

\(\Delta {P}_{D}\) :

Incremental change in load demand

\({K}_{dc}\) :

Gain constant of HVDC link

\(\Delta f\) :

Incremental change in area frequency

\({T}_{dc}\) :

Time constant of HVDC link

\(\Delta {P}_{tie}\) :

Incremental change in tie-line power

\({K}_{T}\) :

Participation factor for thermal unit

\({ACE}_{i}\) :

Area control error

\({K}_{H}\) :

Participation factor for hydro unit

\({T}_{sg}\) :

Speed governor time constant of thermal unit

\({K}_{G}\) :

Participation factor for gas unit

\({K}_{r}\) :

Reheat gain constant

\({K}_{p}\) :

Controller proportional gain

\({T}_{r}\) :

Reheat time constant

\({K}_{i}\) :

Controller integral gain

\({T}_{gh}\) :

Hydro turbine speed governor main servo time constant

\({K}_{d}\) :

Controller derivative gain

References

  1. Ali ES, Abd-Elazim SM (2011) Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int J Electr Power Energy Syst 33(3):633–638

    Article  Google Scholar 

  2. Panda S, Mohanty B, Hota PK (2013) Hybrid BFOA-PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems. Appl Soft Comput 13:4718–4730

    Article  Google Scholar 

  3. Abd-Elazim SM, Ali ES (2018) Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm. Neural Comput Appl 30:607–616

    Article  Google Scholar 

  4. Farahani M, Ganjefar S, Alizadeh M (2012) PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory Appl 6(13):1984–1992

    Article  MathSciNet  Google Scholar 

  5. Konar G, Mandal KK, Chakraborty N (2014) Two area load frequency control of hybrid power system using genetic algorithm and differential evolution tuned PID controller in deregulated environment transactions on engineering technologies. Springer

    Google Scholar 

  6. Omar M, Soliman M, Abdel Ghany AM, Bendary F (2013) Optimal tuning of PID controllers for hydrothermal load frequency control using ant colony optimization. Int J Elect Eng Inform 5(3):348–360

    Google Scholar 

  7. Çelik E (2020) Improved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systems. Eng Appl Artif Intell 88:103407

    Article  Google Scholar 

  8. Guha D, Roy PK, Banerjee S (2016) Load frequency control of large scale power system using quasi-oppositional grey wolf optimization algorithm. Int J Eng Sci Technol 19(4):1693–1713

    Google Scholar 

  9. Shiva CK, Shankar G, Mukherjee V (2015) Automatic generation control of power system using a novel quasi-oppositional harmony search algorithm. Int J Electr Power Energy Syst 73:787–804

    Article  Google Scholar 

  10. Guha D, Roy PK, Banerjee S (2017) Study of differential search algorithm based automatic generation control of an interconnected thermal-thermal system with governor dead-band. Appl Soft Comput 52:160–175

    Article  Google Scholar 

  11. Hota PK, Mohanty B (2016) Automatic generation control of multi source power generation under deregulated environment. Int J Electr Power Energy Syst 75:205–214

    Article  Google Scholar 

  12. Hasanien HM, El-Fergany A (2017) Symbiotic organisms search algorithm for automatic generation control of interconnected power systems including wind farms. IET Gener Transm Distrib 11(7):1692–1700

    Article  Google Scholar 

  13. Guha D, Roy PK, Banerjee S (2018) Symbiotic organism search algorithm applied to load frequency control of multi-area power system. Energy Syst 9(2):439–468

    Article  Google Scholar 

  14. Guha D, Roy P, Banerjee S (2017) Quasi-oppositional symbiotic organism search algorithm applied to load frequency control. Swarm Evol Comput 33:46–67

    Article  Google Scholar 

  15. Gozde H, Taplamacioglu MC, Kocaarslan İ (2012) Comparative performance analysis of artificial bee colony algorithm in automatic generation control for interconnected reheat thermal power system. Int J Electr Power Energy Syst 42(1):167–178

    Article  Google Scholar 

  16. Guha D, Roy PK, Banerjee S (2018) Application of backtracking search algorithm in load frequency control of multi-area interconnected power system. Ain Shams Eng J 9:257–276

    Article  Google Scholar 

  17. Sahu RK, Panda S, Padhan S (2015) A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems. Int J Electr Power Energy Syst 64:9–23

    Article  Google Scholar 

  18. Guha D, Roy PK, Banerjee S (2016) Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol Comput 27:97–115

    Article  Google Scholar 

  19. Mohanty B, Panda S, Hota PK (2014) Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. Int J Electr Power Energy Syst 54:77–85

    Article  Google Scholar 

  20. Singh SP, Prakash T, Singh VP, Babu MG (2017) Analytic hierarchy process based automatic generation control of multi-area interconnected power system using jaya algorithm. Eng Appl Artif Intell 60(2):35–44

    Article  Google Scholar 

  21. Vrdoljak K, Peric N, Petrovic I (2010) Sliding mode based load frequency controller in power systems. Elect Power Syst Res 80(5):514–527

    Article  Google Scholar 

  22. Dahiya P, Sharma V, Naresh R (2019) Optimal sliding mode control for frequency regulation in deregulated power systems with DFIG-based wind turbine and TCSC–SMES. Neural Comput Appl 31:3039–3056

    Article  Google Scholar 

  23. Rosaline AD, Somarajan UK (2019) Structured H-infinity controller for an uncertain deregulated power system. IEEE Trans Indus Appl 55(1):892–906

    Article  Google Scholar 

  24. Sondhi S, Hote YV (2014) Fractional order PID controller for load frequency control. Energy Convers Manage 85:343–353

    Article  Google Scholar 

  25. Arya Y, Kumar N (2017) BFOA-scaled fractional order fuzzy PID controller applied to AGC of multi-area multi-source electric power generating systems. Swarm Evol Comput 32:202–218

    Article  Google Scholar 

  26. Zamani A, Barakati SM, Yousofi-Darmian S (2016) Design of a fractional order PID controller using GBMO algorithm for load frequency control with governor saturation consideration. ISA Trans 64:56–66

    Article  Google Scholar 

  27. Arya Y (2019) A new cascade fuzzy-FOPID controller for AGC performance enhancement of single and multi-area electric power systems. ISA Trans. https://doi.org/10.1016/j.isatra.2019.11.025

    Article  Google Scholar 

  28. Kumar N, Tyagi B, Kumar V (2016) Deregulated multi area AGC scheme using BBBC-FOPID controller. Arab J Sci Eng 42(7):2641–2649

    Article  Google Scholar 

  29. Ebrahim MA, Becherif M, Abdelaziz AY (2021) PID-/FOPID-based frequency control of zero-carbon multisources-based interconnected power systems underderegulated scenarios. Int Trans Elect Energy Syst 31(2):12712

    Article  Google Scholar 

  30. Arya Y, Dahiya P, Çelik E, Sharma G, Gözde H, Nasiruddin I (2021) AGC performance amelioration in multi-area interconnected thermal and thermal-hydro-gas power systems using a novel controller. Eng Sci Technol, Int J 24(2):384–396

    Google Scholar 

  31. Arya Y, Kumar N, Dahiya P, Sharma G, Çelik E, Dhundhara S, Sharma M (2021) Cascade-IλDμN controller design for AGC of thermal and hydrothermal power systems integrated with renewable energy sources. IET Renew Power Gener 15(3):504–520

    Article  Google Scholar 

  32. Saikia LC, Mishra S, Sinha N, Nanda J (2011) Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller. Int J Electr Power Energy Syst 33(4):1101–1108

    Article  Google Scholar 

  33. Sahu RK, Panda S, Sekhar GTC (2015) A novel hybrid PSO-PS optimized fuzzy PI controller for AGC in multi area interconnected power systems. Int J Electr Power Energy Syst 64:880–893

    Article  Google Scholar 

  34. Sahu BK, Pati TK, Nayak JR, Panda S, Kar SK (2016) A novel hybrid LUS-TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system. Int J Electr Power Energy Syst 74:58–69

    Article  Google Scholar 

  35. Nayak JR, Shaw B, Sahu BK (2018) Application of adaptive-SOS (ASOS) algorithm based interval type-2 fuzzy-PID controller with derivative filter for automatic generation control of an interconnected power system. Int J Eng Sci Technol 21(3):465–485

    Google Scholar 

  36. Haroun AHG, Li YY (2017) A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics. ISA Trans 71(2):364–379

    Article  Google Scholar 

  37. Fathy A, Kassem AM, Abdelaziz AY (2018) Optimal design of fuzzy PID controller for deregulated LFC of multi-area power system via mine blast algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3720-x

    Article  Google Scholar 

  38. Nayak N, Mishra S, Sharma D, Sahu BK (2019) Application of modified sine cosine algorithm to optimally design PID/fuzzy-PID controllers to deal with AGC issues in deregulated power system. IET Gener Transm Distrib 13(12):2474–2487

    Article  Google Scholar 

  39. Nayak PC, Mishra S, Prusty RC, Panda S (2020) Performance analysis of hydrogen aqua equaliser fuel-cell on AGC of wind-hydro-thermal power systems with sunflower algorithm optimised fuzzy-PDFPI controller. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1839556

    Article  Google Scholar 

  40. Khuntia SR, Panda S (2012) Simulation study for automatic generation control of a multi-area power system by ANFIS approach. Appl Soft Comput 12:333–341

    Article  Google Scholar 

  41. Fathy A, Kassem AM (2019) Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine. ISA Trans 87:282–296

    Article  Google Scholar 

  42. Sharma D, Mishra S (2019) Non-linear disturbance observer-based improved frequency and tie-line power control of modern interconnected power systems. IET Gener Transm Distrib 13(16):3564–3573

    Article  Google Scholar 

  43. Guha D, Roy PK, Banerjee S (2020) Disturbance observer aided optimised fractional-order three-degree-of-freedom tilt-integral-derivative controller for load frequency control of power systems. IET Gener Transm Distrib. https://doi.org/10.1049/gtd2.12054

    Article  Google Scholar 

  44. Chandran K, Murugesan R, Gurusamy S, Mohideen KA, Pandiyan S, Nayyar A, Abouhawwash M, Nam AY (2020) Modified cascade controller design for unstable processes with large dead time. IEEE Access 8:157022–157036

    Article  Google Scholar 

  45. Sivalingam R, Chinnamuthu S, Dash SS (2017) A hybrid stochastic fractal search and local unimodal sampling based multistage PDF plus (1 + PI) controller for automatic generation control of power systems. J Franklin Inst 354:4762–4783

    Article  MathSciNet  MATH  Google Scholar 

  46. Khamari D, Sahua RK, Panda S (2020) Adaptive differential evolution based PDF plus (1+PI) controller for frequency regulation of the distributed power generation system with electric vehicle. J Ambient Energy. https://doi.org/10.1080/01430750.2020.1783357

    Article  Google Scholar 

  47. Padhy S, Panda S, Mahapatra S (2017) A modified GWO technique based cascade PI-PD controller for AGC of power systems in presence of plug in electric vehicles. Int J Eng Sci Technol 20(2):427–442

    Google Scholar 

  48. Dash P, Saikia LC, Sinha N (2016) Flower pollination algorithm optimized PI-PD cascade controller in automatic generation control of a multi-area power system. Int J Electr Power Energy Syst 82:19–28

    Article  Google Scholar 

  49. Padhy S, Panda S (2017) A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles. CAAI Trans Intell Technol 2:12–25

    Article  Google Scholar 

  50. Puja D (2015) Saikia LC, Sinha N, “Automatic generation control of multi area thermal system using Bat algorithm optimized PD–PID cascade controller.” Int J Electr Power Energy Syst 68:364–372

    Article  Google Scholar 

  51. Satapathy P, Debnath MK, Mohanty MK, “Design of PD-PID controller with double derivative filter for frequency regulation”, IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, pp. 1142–1147, 2018.

  52. Nayyar A, Le DN, Nguyen HG (2018) Advances in swarm intelligence for optimizing problems in computer science. CRC Press

    Book  MATH  Google Scholar 

  53. Tharwat A, Gabel T, Hassanien AE, “Parameter optimization of support vector machine using dragonfly algorithm”, International Conference on Advanced Intelligent Systems and Informatics, Springer, Cham, pp. 309–319, 2017.

  54. Kumaran J, Sasikala J (2017) Dragonfly optimization based ANN model for forecasting India’s primary fuels’ demand. Int J Computer Appl 164(7):18–22

    Google Scholar 

  55. Wu J, Zhu Y, Wang Z, Song Z, Liu X, Wang W, Zhang Z, Yu Y, Xu Z, Zhang T, Zhou J (2017) A novel ship classification approach for high resolution SAR images based on the BDAKELM classification model. Int J Remote Sens 38(23):6457–6476

    Article  Google Scholar 

  56. Hariharan M, Sindhu R, Vijean V, Yazid H, Nadarajaw T, Yaacob S, Polat K (2018) Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification. Comput Methods Programs Biomed 155:39–51

    Article  Google Scholar 

  57. Rakoth S, Sasikala J (2017) Multilevel segmentation of fundus images using dragonfly optimization. Int J Computer Appl 164(4):28–32

    Google Scholar 

  58. Hemamalini B, Nagarajan V (2020) Wavelet transform and pixel strength-based robust watermarking using dragonfly optimization. Multim Tools Appl 79(7):8727–8746

    Article  Google Scholar 

  59. Połap D, Wo´zniak M, “Detection of important features from images using heuristic approach”, International Conference on Information and Software Technologies, Springer, Berlin, Germany, pp. 432–441, 2017.

  60. Seyedali M (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  Google Scholar 

  61. Venkatesh M, Sudheer G (2017) Optimal load frequency regulation of micro-grid using dragonfly algorithm. Int Res J Eng Technol 4(8):978–981

    Google Scholar 

  62. Nour EL, Kouba Y, Menaa M, Hasni M, Boudour M (2018) A novel optimal combined fuzzy PID controller employing dragonfly algorithm for solving automatic generation control problem. Electric Power Compon Syst 46(19–20):2054–2070

    Google Scholar 

  63. Çelik E (2021) Design of new fractional order PI–fractional order PD cascade controller through dragonfly search algorithm for advanced load frequency control of power systems. Soft Comput 20:1193–1217

    Article  Google Scholar 

  64. Singh S, Ashok A, Kumar M, Garima Rawat TK (2018) Optimal design of IIR filter using dragonfly algorithm applications of artificial intelligence techniques in engineering. Springer

    Google Scholar 

  65. Aadil F, Ahsan W, Rehman ZU, Shah PA, Rho S, Mehmood I (2018) Clustering algorithm for internet of vehicles (IoV) based on dragonfly optimizer (CAVDO). J Supercomput 74:4542–4567

    Article  Google Scholar 

  66. Saleh AA, Mohamed AA, Hemeida AM, Ibrahim AA, “Comparison of different optimization techniques for optimal allocation of multiple distribution generation”, International Conference on Innovative Trends in Computer Engineering, Aswan, Egypt, pp. 317–323, 2018.

  67. Wen G, Hu G, Hu J, Shi X, Chen G (2016) Frequency regulation of source-grid-load systems: a compound control strategy. IEEE Trans Industr Inf 12(1):69–78

    Google Scholar 

  68. Barisal AK (2015) Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power systems. Int J Electr Power Energy Syst 66:67–77

    Article  Google Scholar 

  69. Suresh V, Sreejith S (2017) Generation dispatch of combined solar thermal systems using dragonfly algorithm. Computing 99:59–80

    Article  MathSciNet  MATH  Google Scholar 

  70. Rout UK, Sahu RK, Panda S (2013) Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system. Ain Shams Eng J 4(3):409–421

    Article  Google Scholar 

  71. Sahu RK, Panda S, Rout UK, Sahoo DK (2016) Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller. Int J Electr Power Energy Syst 77:287–301

    Article  Google Scholar 

  72. Gozde H, Taplamacioglu MC (2011) Automatic generation control application with craziness based particle swarm optimization in a thermal power system. Int J Electr Power Energy Syst 33(1):8–16

    Article  Google Scholar 

  73. Mohanty B, Panda S, Hota PK (2014) Differential evolution algorithm based automatic generation control for interconnected power systems with non-linearity. Alex Eng J 53:537–552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Çelik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Nominal parameters of test systems in order

Test system-1 [1, 2, 7, 33, 71];

\(f=60\) Hz, \(B=0.425\) p.u MW/Hz, \(R=2.4\) Hz/pu, \({T}_{\mathrm{g}}=0.03\) s, \({T}_{\mathrm{t}}=0.3\) s, \({K}_{\mathrm{ps}}=120\) Hz/pu, \({T}_{\mathrm{ps}}=20\) s, \({T}_{12}=0.545\) p.u MW/rad.

Test system-2 [2, 7, 15, 71];

\(f=60\) Hz, \(B=0.425\) p.u MW/Hz, \(R=2.4\) Hz/pu, \({T}_{\mathrm{g}}=0.2\) s, \({T}_{\mathrm{t}}=0.3\) s, \({K}_{\mathrm{ps}}=120\) Hz/pu, \({T}_{\mathrm{ps}}=20\) s, \({T}_{12}=0.444\) p.u MW/rad.

Test system-3 [19, 45, 47, 68];

\(f=60\) Hz, \(R=2.4\) Hz/pu, \({T}_{\mathrm{sg}}=0.08\) s, \({K}_{\mathrm{r}}=0.3\), \({T}_{\mathrm{r}}=10\) s, \({T}_{\mathrm{t}}=0.3\) s, \({T}_{\mathrm{gh}}=0.2\) s, \({T}_{\mathrm{rs}}=5\) s, \({T}_{\mathrm{rh}}=28.75\) s \({T}_{\mathrm{w}}=1\) s, \({b}_{\mathrm{g}}=0.05\) s, \({c}_{\mathrm{g}}=1\), \({X}_{\mathrm{c}}=0.6\) s, \({Y}_{\mathrm{c}}=1\) s, \({T}_{\mathrm{cr}}=0.01\) s, \({T}_{\mathrm{f}}=0.23\) s, \({T}_{\mathrm{cd}}=0.2\) s, \({K}_{\mathrm{T}}=0.543478\) pu, \({K}_{\mathrm{H}}=0.326084\) pu, \({K}_{\mathrm{G}}=0.130438\) pu, \({K}_{\mathrm{ps}}=68.9566\) Hz/pu MW, \({T}_{\mathrm{ps}}=11.49\) s.

Test system-4 [19, 45, 47, 49];

\(f=60\) Hz, \(B=0.4312\) pu, \(R=2.4\) Hz/pu, \({T}_{\mathrm{sg}}=0.08\) s, \({K}_{\mathrm{r}}=0.3\), \({T}_{\mathrm{r}}=10\) s, \({T}_{\mathrm{t}}=0.3\) s, \({T}_{\mathrm{gh}}=0.2\) s, \({T}_{\mathrm{rs}}=5\) s, \({T}_{\mathrm{rh}}=28.75\)\({T}_{\mathrm{w}}=1\) s, \({b}_{\mathrm{g}}=0.05\) s, \({c}_{\mathrm{g}}=1\), \({X}_{\mathrm{c}}=0.6\) s, \({Y}_{\mathrm{c}}=1\) s, \({T}_{\mathrm{cr}}=0.01\) s, \({T}_{\mathrm{f}}=0.23\) s, \({T}_{\mathrm{cd}}=0.2\) s, \({K}_{\mathrm{T}}=0.543478\) pu, \({K}_{\mathrm{H}}=0.326084\) pu, \({K}_{\mathrm{G}}=0.130438\) pu, \({T}_{12}=0.0433\), \({K}_{\mathrm{ps}}=68.9566\) Hz/pu MW, \({T}_{\mathrm{ps}}=11.49\) s.

Test system-5 [10, 19, 68];

\(f=60\) Hz, \(B=0.4312\) pu, \(R=2.4\) Hz/pu, \({T}_{\mathrm{sg}}=0.08\) s, \({K}_{\mathrm{r}}=0.3\), \({T}_{\mathrm{r}}=10\) s, \({T}_{\mathrm{t}}=0.3\) s, \({T}_{\mathrm{gh}}=0.2\) s, \({T}_{\mathrm{rs}}=5\) s, \({T}_{\mathrm{rh}}=28.75\) s \({T}_{\mathrm{w}}=1\) s, \({b}_{\mathrm{g}}=0.05\) s, \({c}_{\mathrm{g}}=1\), \({X}_{\mathrm{c}}=0.6\) s, \({Y}_{\mathrm{c}}=1\) s, \({T}_{cr}=0.01\) s, \({T}_{\mathrm{f}}=0.23\) s, \({T}_{\mathrm{cd}}=0.2\) s, \({K}_{\mathrm{T}}=0.543478\) pu, \({K}_{\mathrm{H}}=0.326084\) pu, \({K}_{\mathrm{G}}=0.130438\) pu, \({T}_{12}=0.0433\), \({K}_{\mathrm{ps}}=68.9566\) Hz/pu MW, \({T}_{\mathrm{ps}}=11.49\) s, \({K}_{dc}=1\), \({T}_{\mathrm{dc}}=0.2\) s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, E., Öztürk, N., Arya, Y. et al. (1 + PD)-PID cascade controller design for performance betterment of load frequency control in diverse electric power systems. Neural Comput & Applic 33, 15433–15456 (2021). https://doi.org/10.1007/s00521-021-06168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06168-3

Keywords

Navigation