Skip to main content
Log in

Adaptive neural fault-tolerant control for uncertain MIMO nonlinear systems with actuator faults and coupled interconnections

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Handling both intermittent actuator faults and coupled interconnections in uncertain multiple-input–multiple-output nonlinear system is still a challenge in the control community. In this paper, to address this issue, an adaptive neural fault-tolerant control scheme is developed. Firstly, neural networks with random hidden nodes are used to approximate unknown functions, and an inequality is introduced to construct controllers such that the singularity problem of the controllers can be circumvented. Secondly, a projection algorithm is adopted to update online the estimated parameters in the controllers such that the boundedness of estimated parameters is ensured. In particular, the boundedness of estimate of unknown fault parameters with intermittent jumps can be definitely guaranteed. Due to the effects of intermittency jumps of unknown parameters on the system stability during operation, a modified Lyapunov function is developed to prove the system stability. It is proved that the system stability only depends on the jumping amplitude of Lyapunov function and the minimum fault time interval and is not affected by the total number of faults. Thirdly, a root mean square type of bound for the tracking error is established by using iterative calculation to illustrate that the system transient performance in the sense of the tracking error is adjustable by proper choice of design parameters. Finally, simulation studies are carried out to verify the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, New York

    MATH  Google Scholar 

  2. Jain S, Khorrami F (1997) Decentralized adaptive output feedback design for large-scale nonlinear systems. IEEE Trans Autom Control 42(5):729–735

    Article  MathSciNet  MATH  Google Scholar 

  3. Wen C, Zhou J (2007) Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis. Automatica 43:426–440

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen B, Lin C, Liu X, Liu K (2015) Adaptive fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict-feedback form. IEEE Trans Cybern 45(12):2744–2755

    Article  Google Scholar 

  5. Mehraeen S, Jagannathan S, Crow ML (2011) Decentralized dynamic surface control of large-scale interconnected systems in strict-feedback form using neural networks with asymptotic stabilization. IEEE Trans Neural Netw 22(11):1709–1722

    Article  Google Scholar 

  6. Hamdy M, El-Ghazaly G (2014) Adaptive neural decentralized control for strict feedback nonlinear interconnected systems via backstepping. Neural Comput Appl 24(2):259–269

    Article  Google Scholar 

  7. Tao G, Joshi SM, Ma X (2001) Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans Autom Control 46(1):78–95

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodson M, Groszkiewicz JE (1997) Multivariable adaptive algorithms for reconfigurable flight control. IEEE Trans Control Syst Technol 5(2):217–229

    Article  Google Scholar 

  9. Yang GH, Ye D (2010) Reliable \(H_{\infty }\) control of linear systems with adaptive mechanism. IEEE Trans Autom Control 55(1):242–247

    MathSciNet  MATH  Google Scholar 

  10. Tang X, Tao G, Joshi SM (2003) Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application. Automatica 39:1975–1982

    Article  MathSciNet  MATH  Google Scholar 

  11. Tang X, Tao G, Joshi SM (2007) Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica 43:1869–1883

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang W, Wen C (2010) Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46:2082–2091

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang W, Wen C (2011) Adaptive compensation for infinite number of actuator failures or faults. Automatica 47:2197–2210

    Article  MathSciNet  MATH  Google Scholar 

  14. Cai J, Wen C, Su H, Liu Z (2013) Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans Autom Control 58(9):2388–2394

    Article  MathSciNet  MATH  Google Scholar 

  15. Lai G, Wen C, Liu Z, Zhang Y, Chen CP, Xie S (2018) Adaptive compensation for infinite number of actuator failures based on tuning function approach. Automatica 87:365–374

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang C, Wen C, Guo L (2016) Decentralized output-feedback adaptive control for a class of interconnected nonlinear systems with unknown actuator failures. Automatica 71:187–196

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang Q, Ge SS, Sun Y (2015) Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators. Automatica 60:92–99

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen Q, Jiang B, Shi P, Lim CC (2014) Novel neural networks-based fault tolerant control scheme with fault alarm. IEEE Trans Cybern 44(11):2190–2201

    Article  Google Scholar 

  19. Shen Q, Jiang B, Cocquempot V (2014) Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans Fuzzy Syst 22(2):338–349

    Article  Google Scholar 

  20. Liu X, Wang YW, Chen D, Chen H (2016) Adaptive fuzzy fault-tolerant control for a class of unknown non-linear dynamical systems. IET Control Theory Appl 10(18):2357–2369

    Article  MathSciNet  Google Scholar 

  21. Li YX, Yang GH (2017) Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones. IEEE Trans Syst Man Cybern Syst 47(5):729–740

    Article  Google Scholar 

  22. Tong S, Huo B, Li Y (2014) Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans Fuzzy Syst 22(1):1–15

    Article  Google Scholar 

  23. Li Y, Tong S (2017) Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults. IEEE Trans Neural Netw Learn Syst 28(11):2541–2554

    Article  MathSciNet  Google Scholar 

  24. Semprun KA, Yan L, Butt WA, Chen PC (2017) Dynamic surface control for a class of nonlinear feedback linearizable systems with actuator failures. IEEE Trans Neural Netw Learn Syst 28(9):2209–2214

    MathSciNet  Google Scholar 

  25. Li XJ, Yang GH (2018) Neural-network-based adaptive decentralized fault-tolerant control for a class of interconnected nonlinear systems. IEEE Trans Neural Netw Learn Syst 29(1):144–155

    Article  MathSciNet  Google Scholar 

  26. Zhang TP, Ge SS (2008) Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44:1895–1903

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  28. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

    Article  Google Scholar 

  29. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42(2):513–529

    Article  Google Scholar 

  30. Liu X, Jutan A, Rohani S (2004) Almost disturbance decoupling of MIMO nonlinear systems and application to chemical processes. Automatica 40:465–471

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant 61633001, 61673315, 61075001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 2

Proof

Integrating both sides of (31) over \([t_{i}^{q_i},t_{i}^{q_i+1})\) and using \(V_{i}(t_{i}^{(q_i+1)-})=V_{i}(t_{i}^{(q_i+1)+})-\Delta {V}_{i}^{q_i}\) obtained from (32), we have

$$\begin{aligned} V_{i}\left( t_{i}^{(q_i+1)+}\right)\le & V_{i}\left( t_{i}^{q_i+}\right) {\mathrm{e}}^{-\chi _{i}\left( {t}_{i}^{q_i+1}-{t}_{i}^{q_i}\right) }+\Delta {V}_{i}^{q_i}\nonumber \\&+\,{\mathrm{e}}^{-\chi _{i}\left( {t}_{i}^{q_i+1}-{t}_{i}^{q_i}\right) }\int _{t_{i}^{q_i}}^{t_{i}^{q_i+1}}\delta _{i}{\mathrm{e}}^{\chi _{i}\left( t-{t}_{i}^{q_i}\right) }\mathrm {d}t, \end{aligned}$$
(49)

We suppose that \(N_i(0,T)\) denotes the total number of actuator faults for the \(i\hbox {th}\) subsystem during [0, T). Then, according to (49), in the intervals \(\left[ 0,t_{i}^{1+}\right] ,\ldots ,\left[ t_{i}^{\left( N_i(0,T)-1\right) +},t_{i}^{(N_i(0,T))+}\right]\), the following inequalities hold:

$$\begin{aligned} V_{i}\left( t_{i}^{1+}\right)\le & V_{i}\left( 0\right) {\mathrm{e}}^{-\chi _{i}t_{i}^1}+\Delta {V}_{i}^1\nonumber \\&+\,{\mathrm{e}}^{-\chi _{i}t_{i}^1}\int _{0}^{t_{i}^1}\delta _{i}{\mathrm{e}}^{\chi _{i}t}\mathrm {d}t, \end{aligned}$$
(50)
$$\begin{aligned}&\vdots&\nonumber \\ V_{i}\left( t_{i}^{N_i(0,T)+}\right)\le & V_{i}\left( t_{i}^{(N_i(0,T)-1)+}\right) {\mathrm{e}}^{-\chi _{i}\left( t_{i}^{N_i(0,T)}-t_{i}^{N_i(0,T)-1}\right) }\nonumber \\&+\,\Delta {V}_{i}^{N_i(0,T)}\nonumber \\&+\,{\mathrm{e}}^{-\chi _{i}\left( t_{i}^{N_i(0,T)}-t_{i}^{N_i(0,T)-1}\right) }\nonumber \\&\int _{t_{i}^{N_i(0,T)-1}}^{t_{i}^{N_i(0,T)}}\delta _{i}{\mathrm{e}}^{\chi _{i}\left( t-t_{i}^{N_i(0,T)-1}\right) }\mathrm {d}t. \end{aligned}$$
(51)

Considering (50) and (51), in the time interval [0, T), we have

$$\begin{aligned} V_{i}(T)\le & V_{i}\left( t_{i}^{N_i(0,T)+}\right) {\mathrm{e}}^{-\chi _{i}\left( T-t_{i}^{N_i(0,T)}\right) }\nonumber \\&+\,{\mathrm{e}}^{-\chi _{i}\left( T-t_{i}^{N_i(0,T)}\right) }\int _{t_{i}^{N_i(0,T)}}^{T}\delta _{i}{\mathrm{e}}^{\chi _{i}\left( t-t_{i}^{N_i(0,T)}\right) }\mathrm {d}t\nonumber \\\le & V_{i}(0){\mathrm{e}}^{-\chi _{i}T}+\sum _{q=1}^{N_i(0,T)}\Delta {V}_{i}^{q_i}{\mathrm{e}}^{\chi _{i}\left( t_{i}^{q_i}-T\right) }\nonumber \\&+\,{\mathrm{e}}^{-\chi _{i}T}\int _{0}^{T}\delta _{i}{\mathrm{e}}^{\chi _{i}t}\mathrm {d}t. \end{aligned}$$
(52)

According to [15], we can easily obtain \(N_i(t_{i}^{q_i},T)\le (T-t_{i}^{q_i})/T_i^*\) where \(T_i^*\) is defined in (34), which implies that \(t_{i}^{q_i}-T\le -N_i(t_{i}^{q_i},T)T_i^*\). Thus, the term \(\sum _{q=1}^{N_i(0,T)}{\mathrm{e}}^{\chi _{i}(t_{i}^{q_i}-T)}\le (1-{\mathrm{e}}^{-\chi _{i}T_i^*N_i(0,T)})/(1-{\mathrm{e}}^{-\chi _{i}T_i^*})\). Using the fact \(N_i(0,T)\le {T}/T_i^*\) and \(|\Delta {V}_{i}^{q_i}|\le \zeta _i\) from (33), (52) satisfies

$$\begin{aligned} V_{i}(T)\le & V_{i}(0){\mathrm{e}}^{-\chi _{i}T}\nonumber \\&+\,\left[ \frac{\delta _{i}}{\chi _{i}}+\frac{\zeta _i}{1-{\mathrm{e}}^{-\chi _{i}T_i^*}}\right] \left( 1-{\mathrm{e}}^{-\chi _{i}T}\right) . \end{aligned}$$
(53)

Using the fact that \(\lim _{T\rightarrow \infty }(1-{\mathrm{e}}^{-\chi _{i}T})=1\), the inequality (34) can be obtained. \(\square\)

1.2 Proof of Theorem 2

Proof

Revisiting (31), the time derivative of \(V_i\) can also satisfy

$$\begin{aligned} {\dot{V}}_{i}(t)\le -c_i\Vert z_i\Vert ^2+\delta _{i}, \end{aligned}$$
(54)

where \(\delta _{i}\) is given in (31), \(c_i=\min _{j_i=1,\ldots ,n_i}\{c_{i,j_i}\}\), \(z_i=[z_{i,1},\ldots ,z_{i,n_i}]^{\mathrm {T}}\).

Integrating both sides of (54) over \([t_{i}^{q_i},t_{i}^{q_i+1})\), we can obtain the following iteration formula by using \(V_{i}(t_{i}^{(q_i+1)-})=V_{i}(t_{i}^{(q_i+1)+})-\Delta {V}_{i}^{q_i}\) obtained from (32)

$$\begin{aligned} \int _{t_{i}^{q_i}}^{t_{i}^{q_i+1}}\Vert z_i(t)\Vert ^2\mathrm {d}t\le & \frac{1}{c_i}\bigg [V_{i}\left( t_{i}^{q_i+}\right) +\Delta {V}_{i}^{q_i}-V_{i}\left( t_{i}^{(q_i+1)+}\right) \nonumber \\&+\,\int _{t_{i}^{q_i}}^{t_{i}^{q_i+1}}\delta _{i}\mathrm {d}t\bigg ]. \end{aligned}$$
(55)

For an arbitrary time instant \(T>0\), \(N_i(0,T)\) denotes the total number of actuator faults for \(i\hbox {th}\) subsystem during [0, T). So, using iteration formula (55), in the intervals \(\left[ 0,t_{i}^{1+}\right] ,\ldots ,\left[ t_{i}^{(N_i(0,T)-1)+},t_{i}^{N_i(0,T)+}\right]\), we have

$$\begin{aligned} \int _{0}^{t_{i}^{1}}\Vert z_i(t)\Vert ^2\mathrm {d}t\le & \frac{1}{c_i}\Bigg [V_{i,n_i}(0)+\Delta {V}_{i}^{1}-V_{i}\left( t_{i}^{1+}\right) \nonumber \\&+\,\int _{0}^{t_{i}^1}\delta _{i}\mathrm {d}t\Bigg ], \end{aligned}$$
(56)
$$\begin{aligned}&\vdots&\nonumber \\ \int _{t_{i}^{N_i(0,T)}}^{T}\Vert z_i(t)\Vert ^2\mathrm {d}t\le & \frac{1}{c_i}\Bigg [V_{i}\left( t_{i}^{(N_i(0,T)-1)+}\right) +\Delta {V}_{i}^{N_i(0,T)}\nonumber \\&-\,V_{i}\left( t_{i}^{N_i(0,T)+}\right) +\int _{t_{i}^{N_i(0,T)-1}}^{t_{i}^{N_i(0,T)}}\delta _{i}\mathrm {d}t\Bigg ]. \end{aligned}$$
(57)

From (56), (57) and \(|\Delta {V}_{i}^{q_i}|\le \zeta _i\), \(q_i=1,\ldots ,N_i(0,T)\), obtained from (33), in the time interval [0, T), we have

$$\begin{aligned}&\frac{1}{T}\int _{0}^{T}\Vert z_i(t)\Vert ^2\mathrm {d}t\nonumber \\&\quad \le \frac{1}{c_i}\bigg [\frac{|V_{i}(0)-V_{i}(T)|}{T}+\frac{N_{i}(0,T)\zeta _i}{T}+\delta _{i}\bigg ] \end{aligned}$$
(58)

On the other hand, from (53), we have

$$\begin{aligned} \frac{\big |V_{i}(0)-V_{i}(T)\big |}{T}\le & \frac{1-{\mathrm{e}}^{-\chi _{i}T}}{T}\Big (V_{i}(0)\nonumber \\&+\,\frac{\delta _{i}}{\chi _{i}}\Big )+\frac{\zeta _i}{T\left( 1-{\mathrm{e}}^{-\chi _{i}T_i^*}\right) }\nonumber \\\le & \chi _{i,n_i}V_{i,n_i}(0)+\delta _{i,n_i} \end{aligned}$$
(59)

where we have used the fact that \((1-{\mathrm{e}}^{-\chi _{i}T})/T\le \chi _{i}\) and \(\lim _{T\rightarrow \infty }{\zeta _i}/({T(1-{\mathrm{e}}^{-\chi _{i}T_i^*})})=0\). By substituting (59) into (58) and using the fact \(\chi _{i}/c_i\le 2\), we have

$$\begin{aligned} \frac{1}{T}\int _{0}^{T}\Vert z_i(t)\Vert ^2\mathrm {d}t\le 2V_{i}(0)+\frac{2}{c_i}\delta _{i}+\frac{N_{i}(0,T)\zeta _i}{T} \end{aligned}$$
(60)

For the whole system, considering (60), we obtain

$$\begin{aligned} \int _{0}^{T}\Vert z_i(t)\Vert ^2\mathrm {d}t\le & 2V(0)+\frac{2\sum _{i=1}^N\delta _{i}}{c_0}\nonumber \\&+\,\frac{1}{c_0}\sum _{i=1}^N\frac{N_{i}(0,T)\zeta _i}{T} \end{aligned}$$
(61)

where \(c_0=\min _{i=1,\ldots ,N}\{c_i\}\). \(V(0)=\sum _{i=1}^NV_{i}(0)\) and

$$\begin{aligned} V_{i}(0)& = \frac{1}{2}\sum _{j_i=1}^{n_i}\Big [z_{i,j_i}^2(0)+{\gamma _{\theta {i,j_i}}^{-1}}\Vert {\tilde{\theta }}_{i,j_i}(0)\Vert ^2\nonumber \\&+\,{\gamma _{\mathrm {d}{i,j_i}}^{-1}}{\tilde{d}}_{i,j_i}^2(0)+{\gamma _{\mathrm {b}{i,j_i}}^{-1}}{\underline{g}}_{i,j_i}{\tilde{b}}_{i,j_i}^2(0)\Big ]\nonumber \\&+\,{\gamma _{\beta {i}}^{-1}}{\tilde{\beta }}_{i}^2(0) \end{aligned}$$
(62)

By using trajectory initialization technique [1, 3], we can set \(z_{i,j_i}(0)\) to zero, i.e., let \(z_{i,1}(0)=y_{\mathrm {d}i}(0)\), \(z_{i,j_i}(0)=\alpha _{i,j_i-1}(0)\). Then using the fact \(N_i(0,T)T_i^*\le {T}\) and substituting (62) and \(\delta _{i}\) into (61), the bound (36) is established. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nai, YQ., Yang, QY. & Zhang, ZQ. Adaptive neural fault-tolerant control for uncertain MIMO nonlinear systems with actuator faults and coupled interconnections. Neural Comput & Applic 32, 12755–12770 (2020). https://doi.org/10.1007/s00521-020-04723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04723-y

Keywords

Navigation