Skip to main content
Log in

A novel robust \(H_{\infty }\) fuzzy state feedback plus state-derivative feedback controller design for nonlinear time-varying delay systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the problem of designing a robust \(H_{\infty }\) state feedback plus state-derivative feedback control mechanism for a class of uncertain nonlinear time-varying delay systems described by a Takagi–Sugeno fuzzy model. A linear matrix inequality approach is applied to derive a robust controller for such a system. The proposed controller satisfies design requirements that ensure that the closed-loop system is asymptotically stable and meets pre-prescribed \(H_{\infty }\) performance index values. Finally, the illustrative examples are simulated to illustrate the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Assawinchaichote W (2014) Further results on robust fuzzy dynamic systems with \(D\)-stability constraints, Internat. J Appl Math Comput Sci 24:785–794

    Google Scholar 

  2. Nguang SK, Shi P (2000) Stabilisation of a class of nonlinear time-delay systems using fuzzy models. In: Proceedings of IEEE conference on decision and control, pp 4415–4419

  3. Wang WJ, Lin WW (2000) State feedback stabilization for T–S fuzzy time delay systems. In: Proceedings of IEEE conference on fuzzy systems, pp 561–565

  4. Yoneyama J (2000) Robust control analysis and synthesis for uncertain fuzzy systems with time-delay. In: Proceedings of IEEE conference on fuzzy systems, pp 396–401

  5. Lee KR, Kim JH, Jeung ET, Park HB (2000) Output feedback robust: \(H_{\infty }\) control of uncertain fuzzy dynamic systems with time-varying delay. IEEE Trans Fuzzy Syst 8:657–664

    Google Scholar 

  6. Wang RJ, Lin WW, Wang WJ (2004) Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Trans Syst Man Cybern Part B 34:1–4

    Article  Google Scholar 

  7. Cao YY, Frank PM (2001) Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi–Sugeno fuzzy models. Fuzzy Sets Syst 124:213–229

    Article  MathSciNet  Google Scholar 

  8. Assawinchaichote W (2014) A new robust \(H_{\infty }\) fuzzy state-feedback control design for nonlinear Markovianjump systems with time-varying delay. Control Cybern 43:227–248

    Google Scholar 

  9. Hill DJ, Moylan PJ (1980) Dissipative dynamical systems: basic input-output and state properties. J Frankl Inst 309:327–357

    Article  MathSciNet  Google Scholar 

  10. Ball JA, Helton JW (1989) \(H_{\infty }\) control for nonlinear plants: connection with differential games. In: IEEE conference on decision and control, pp 956–962

  11. Isidori A (1991) Feedback control of nonlinear systems. In: Proceedings of first European control conference, pp 1001–1012 (1991)

  12. van der Schaft AJ (1992) \(L_2\)-gain analysis of nonlinear systems and nonlinear state feedback \(H_{\infty }\) control. IEEE Trans Autom Control 37:770–784

    Google Scholar 

  13. Isidori A, Astofi A (1992) Disturbance attenuation and \(H_{\infty }\)-control via measurement feedback in nonlinear systems. IEEE Trans Autom Control 37:1283–1293

    Google Scholar 

  14. van der Schaft AJ (1991) A state-space approach to nonlinear \(H_{\infty }\) control. Syst Control Lett 16:1–8

    Google Scholar 

  15. Choi HH, Chung MJ (1995) Memoryless \(H_{\infty }\) controller design for linear systems with delayed state and control. Autom J IFAC 31:917–919

    Google Scholar 

  16. Kim JH, Jeung ET, Park HB (1996) Robust control parameter uncertain delay systems in state and control input. Autom J IFAC 32:1337–1339

    Article  MathSciNet  Google Scholar 

  17. Jeung ET, Kim JH, Park HB (1998) \(H_{\infty }\) output feedback controller design for linear systems with time-varying delayed state. IEEE Trans Autom Control 43:971–974

    Google Scholar 

  18. Mahmoud MS, AI-Muthairi NF (1994) Design of robust controllers for time delay systems. IEEE Trans Autom Control 39:995–999

    Article  MathSciNet  Google Scholar 

  19. Tanaka K, Ikeda T, Wang HO (1996) Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stability, \(H_{\infty }\) control theory, and linear matrix inequality. IEEE Trans Fuzzy Syst 4:1–13

    Google Scholar 

  20. Chen BS, Tseng CS, He YY (2000) Mixed \(H_{2}\)/\(H_{\infty }\) fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach. IEEE Trans Fuzzy Syst 8:249–265

    Google Scholar 

  21. Cirovic G, Pamucar D (2013) Decision support model for prioritizing railway level crossings for safety improvements: application of the adaptive neuro-fuzzy system. Expert Syst Appl 40(6):2208–2223

    Article  Google Scholar 

  22. Cirovic G, Pamucar D, Bozanic D (2014) Green logistic vehicle routing problem: routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Syst Appl 41(9):4245–4258

    Article  Google Scholar 

  23. Pamucar D, Ljubojevic S, Kostadinovic D, Dorovic B (2016) Cost and risk aggregation in multi-objective route planning for hazardous materials transportation—a neuro-fuzzy and artificial bee colony approach. Expert Syst Appl 65:1–15

    Article  Google Scholar 

  24. Pamucar D, Lukovac V, Pejcic-Tarle S (2013) Application of adaptive neuro fuzzy inference system in the process transportation support. Asia-Pac J Oper Res 30(2):1–32

    Article  Google Scholar 

  25. Pamucar D, Vasin L, Atanaskovic P, Milicic M (2016) Planning the city logistics terminal location by applying the green \(p\)-median model and type-2 neurofuzzy network. Comput Intell Neurosci 6972818:1–15

    Google Scholar 

  26. Pamucar D, Bozanic D, Milic A (2016) Selection of a course of action by obstacle employment group based on a fuzzy logic system. Yugoslav J Oper Res 26(1):75–90

    Article  MathSciNet  Google Scholar 

  27. Pamucar D, Bozanic D, Komazec N (2016) Risk assessment of natural disasters using fuzzy logic system of type 2. Management 80:23–32

    Google Scholar 

  28. Hsiao FH (2012) An NN-based approach to \(H_{\infty }\) fuzzy control for nonlinear multiple time delay systems by dithers. Int J Fuzzy Syst 14:474–489

    Google Scholar 

  29. Idrissi S, Tissir EH, Boumhidi I, Chaibi N (2014) Robust \(H_{\infty }\) control for uncertain T-S fuzzy systems via delay partitioning approach. Int J Ecol Dev 28:96–108

    Google Scholar 

  30. Wang YL, Han QL (2014) Modelling and observer-based \(H_{\infty }\) controller design for networked control systems. IET Control Theory Appl 8:1478–1486

    Google Scholar 

  31. Peng C, Yue D, Tian YC (2009) New approach on robust delay dependent \(H_{\infty }\) control for uncertain T–S fuzzy systems with interval time varying delay. IEEE Trans Fuzzy Syst 17:890–900

    Google Scholar 

  32. Ma Y, Yan H (2013) Delay dependent filter for T–S fuzzy time delay systems with exponential stability. Adv Differ Equ 2013:362–378

    Article  MathSciNet  Google Scholar 

  33. Qing G, He H, Guang F, Lu L, Yong W (2013) Robust \(H_{\infty }\) stabilization of uncertain T-S fuzzy Systems via dynamic integral sliding mode control. Intell Control Autom Sci 3:485–490

    Google Scholar 

  34. Gao Q, Feng G, Xi Z, Qiu J (2014) A new design of robust \(H_{\infty }\) sliding mode control for uncertain stochastic T–S fuzzy time delay systems. IEEE Trans Cybern 44:1556–1566

    Google Scholar 

  35. Assawinchaichote W, Nguang SK, Shi P, Boukas EK (2008) \(H_{\infty }\) Fuzzy state feedback control design for nonlinear systems with \(D\)-stability constraints: an LMI approach. Int J Math Comput Simul 78:514–531

    Google Scholar 

  36. Assawinchaichote W (2012) A non-fragile \(H_{\infty }\) output feedback controller for uncertain fuzzy dynamical systems with multiple time-scales. Int J Comput Commun Control 7:8–19

    Google Scholar 

  37. Shi P, Su X, Li F (2016) Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation. IEEE Trans Autom Control 61(6):1694–1699

    Article  MathSciNet  Google Scholar 

  38. Tao J, Su H, Shi P, Lu R, Wu Z (2017) Dissipativity-based reliable control for fuzzy Markov jump systems with actuator faults. IEEE Trans Cybern 47(9):2377–2388

    Article  Google Scholar 

  39. Wu Z, Dong S, Shi P, Su H, Huang T, Lu R (2017) Fuzzy-model-based non fragile guaranteed cost control of nonlinear Markov jump systems. IEEE Trans Syst Man Cybern Syst 47(8):2388–2397

    Article  Google Scholar 

  40. Dong S, Wu Z, Shi P, Su H, Lu R (2017) Reliable control of fuzzy systems with quantization and switched actuator failures. IEEE Trans Syst Man Cybern Syst 47(8):2198–2208

    Article  Google Scholar 

  41. Wang H, Liu X, Shi P (2017) Observer-based fuzzy adaptive output-feedback control of stochastic nonlinear multiple time-delay systems. IEEE Trans Cybern 47(9):2568–2578

    Article  Google Scholar 

  42. Reithmeier E, Leitmann G (2003) Robust vibration control of dynamical systems based on the derivative of the state. Arch Appl Mech 72(12):856–864

    MATH  Google Scholar 

  43. Faria F, Assuncao E, Teixeira M, Cardim R (2010) Robust state-derivative feedback LMI-based designs for linear descriptor systems. Math Prob Eng. https://doi.org/10.1155/2010/927362

    Article  MathSciNet  MATH  Google Scholar 

  44. Araujo J, Dorea C, Gonalves L, Datta B (2016) State derivative feedback in second-order linear systems: a comparative analysis of perturbed eigenvalues under coefficient variation. Mech Syst Signal Process 76–77:33–46

    Article  Google Scholar 

  45. Bhasin S, Kamalapurkar R, Dinh H, Dixon W (2013) Robust identification based state derivative estimation for nonlinear systems. IEEE Trans Autom Control 58(1):187–192

    Article  MathSciNet  Google Scholar 

  46. Krewpraek N, Assawinchaichote W (2016) \(H_{\infty }\) fuzzy state-feedback control plus state-derivative feedback control synthesis for the photovoltaic system. Asian J Control 18:1441–1452

    Google Scholar 

  47. Assawinchaichote W (2015) LMIs approach based robust \(H_{\infty }\) fuzzy controller design for nonlinear time varying delay system. In: Applications and developments control theory: perspectives. Nova Science Publishers, New York

Download references

Acknowledgements

The authors would like to thank the Department of Electronic and Telecommunication Engineering at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Assawinchaichote.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1: Proof of Theorem 1

Proof

Write the quadratic Lyapunov–Krasovskii functional V(x(t)) as

$$\begin{aligned} V\left( {x(t)} \right) = {x^{\mathrm{T}}}(t)Qx(t) + \beta \int ^{t}_{t-\tau (t)}{x^{\mathrm{T}}(V)Sx(V)}\mathrm{d}V, \end{aligned}$$
(35)

where \(Q = {P^{- 1}}>0, S=W^{-1}>0\) and \(\beta =\frac{1}{1-\tau _d}\). Differentiate \(V\left( {x(t)} \right) \) along the closed-loop system (14); using the fact that for any vector x(t) and \(x(t-\tau (t))\) and matrix G,

$$\begin{aligned}&x^{\mathrm{T}}(t)Gx(t-\tau (t))+{x^{\mathrm{T}}(t-\tau (t))G^Tx(t)}\nonumber \\ &\quad \le \,x^{\mathrm{T}}(t)GR^{-1}G^Tx(t)+x^{\mathrm{T}}(t-\tau (t))Rx(t-\tau (t)), \end{aligned}$$
(36)

where R is a positive definite matrix, we have

$$\begin{aligned} \dot{V}\left( {x(t)} \right)& = {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \Big [ {{{x}^{\mathrm{T}}}(t)} \Big (({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q\nonumber \\&\quad +\,Q{E_{ij}} ({A_i}+B_iK_{s_j})+ {\beta }S\Big )x(t)+{x}^{\mathrm{T}}\big (t-{\tau }(t)\big ){A^{\mathrm{T}}_{d_{i}}}{E^{\mathrm{T}}_{ij}}Qx(t)\nonumber \\&\quad +\,x^{\mathrm{T}}(t)QE_{ij}A_{{{d_{i}}}}x\big (t-{\tau }(t)\big )-\beta \big (1-{\dot{\tau }{(t)}}\big )x^{\mathrm{T}}\big (t-\tau (t)\big )Sx\big (t-{\tau }(t)\big )\nonumber \\&\quad +\,w^{\mathrm{T}}(t)B^{\mathrm{T}}_wE^{\mathrm{T}}_{ij}Qx(t)+x^{\mathrm{T}}(t)QE_{ij}B_ww(t)\Big ]\nonumber \\& \le {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \Big [{{{x}^{\mathrm{T}}}(t)} \Big (({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q\nonumber \\&\quad +\,Q{E_{ij}} ({A_i}+B_iK_{s_j})+ {\beta }S\Big )x(t)+ x^{\mathrm{T}}(t)QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Qx(t)\nonumber \\&\quad +\,x^{\mathrm{T}}\big (t-\tau (t)\big )Sx\big (t-\tau (t)\big )- x^{\mathrm{T}}\big (t-\tau (t)\big )Sx\big (t-\tau (t)\big )\nonumber \\&\quad +\,w^{\mathrm{T}}(t)B^{\mathrm{T}}_wE^{\mathrm{T}}_{ij}Qx(t)+x^{\mathrm{T}}(t)QE_{ij}B_ww(t)\Big ]\nonumber \\& = {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \Big [{{{x}^{\mathrm{T}}}(t)} \Big (({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q+Q{E_{ij}} ({A_i}+B_iK_{s_j})\nonumber \\&\quad +\,QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q+ {\beta }S\Big )x(t)+w^{\mathrm{T}}(t)B^{\mathrm{T}}_wE^{\mathrm{T}}_{ij}Qx(t) \nonumber \\&\quad +\,x^{\mathrm{T}}(t)QE_{ij}B_ww(t)\Big ]. \end{aligned}$$
(37)

By adding and subtracting the equation

$$\begin{aligned} - {z^{\mathrm{T}}}(t)z(t) + {\gamma ^2}\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}}\big [{w^{\mathrm{T}}}(t)w(t)\big ] \end{aligned}$$
(38)

to and from (37), we acquire

$$\begin{aligned} \dot{V} \left( {x(t)} \right)& = {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \left[ {\begin{array}{cc} {{{x}^{\mathrm{T}}}(t)}&{{{w}^{\mathrm{T}}}(t)} \end{array}} \right] \nonumber \\&\quad \times \,\left( {\begin{array}{cc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q +Q{E_{ij}} ({A_i}+B_iK_{s_j})\\ +QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q + {\beta }S+C^{\mathrm{T}}_iC_i \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ B^{\mathrm{T}}_wE^{\mathrm{T}}_{ij}Q&{}{- {\gamma ^2}I} \end{array}} \right) \left[ {\begin{array}{c} {x(t)}\\ {w(t)} \end{array}} \right] \nonumber \\&\quad -\,{z^{\mathrm{T}}}(t)z(t) + {\gamma ^2}\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}}[{w^{\mathrm{T}}}(t)w(t)], \end{aligned}$$
(39)

where

$$\begin{aligned} z(t) = \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} C_ix(t). \end{aligned}$$
(40)

Next, let us consider Theorem 1. By applying the Schur complement, we have

$$\begin{aligned}&\left( {\begin{array}{cccc} \Phi _{ij} &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {P+Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i}&{}0&{}{-\, \frac{1}{\beta }W}&{}{{{(*)}^{\mathrm{T}}}}\\ {C_iP}+C_iY^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i&{}0&{}0&{}{-\, I} \end{array}} \right) \nonumber \\&\quad +\,\left( {\begin{array}{cccc} \left( {\begin{array}{c} B_i(Y_{s_j}+Y_{d_j})P^{-1}\\ (Y_{s_j}+Y_{d_j})^TB^{\mathrm{T}}_i \end{array}} \right) &{}0 &{}0 &{}0\\ 0&{}0 &{}0 &{}0\\ 0&{}0 &{}0 &{}0\\ 0&{}0 &{}0 &{}0 \end{array}} \right) < 0. \end{aligned}$$
(41)

By applying the algebraic inequality

$$\begin{aligned} aX{b} + b^TX{a^{\mathrm{T}}} \le (a + b) X (a + b)^{\mathrm{T}}, \end{aligned}$$
(42)

(41) then yields

$$\begin{aligned}&\left( {\begin{array}{cccc} \Phi _{ij} &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {P+Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i}&{}0&{}{-\, \frac{1}{\beta }W}&{}{{{(*)}^{\mathrm{T}}}}\\ {C_iP}+C_iY^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i&{}0&{}0&{}{-\, I} \end{array}} \right) \nonumber \\&\quad +\,\left( {\begin{array}{cccc} \left( {\begin{array}{c} B_iY_{s_j}P^{-1}Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i\\ +B_iY_{d_j}P^{-1}Y_{s_j}^TB^{\mathrm{T}}_i \end{array}} \right) &{}0 &{}0 &{}0\\ 0&{}0 &{}0 &{}0\\ 0&{}0 &{}0 &{}0\\ 0&{}0 &{}0 &{}0 \end{array}} \right) < \,0, \end{aligned}$$
(43)

and by substituting \(\Phi _{ij}\) shown in Theorem 1 of (43), we have

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} {P}{A^{\mathrm{T}}_i} + {A_i}{P} + Y_{s_j}^TB_i^{\mathrm{T}}+ B_iY_{s_j} + B_i{Y_{d_j}}A^{\mathrm{T}}_i \\ + A_i{Y_{d_j}^{\mathrm{T}}}{B_i^{\mathrm{T}}} + {A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}}\\ +B_iY_{s_j}P^{-1}Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i +B_iY_{d_j}P^{-1}Y_{s_j}^TB^{\mathrm{T}}_i \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {P+Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i}&{}0&{}{-\, \frac{1}{\beta }W}&{}{{{(*)}^{\mathrm{T}}}}\\ {C_iP}+C_iY^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i&{}0&{}0&{}{-\, I} \end{array}} \right) < 0 \end{aligned}$$
(44)

or

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} {P} (A_i+B_iY_{s_j}P^{-1})^{\mathrm{T}} + (A_i + B_iY_{s_j}P^{-1})P\\ +B_iY_{d_j}P^{-1}P(A_i+B_iY_{s_j}P^{-1})^{\mathrm{T}}\\ + (A_i+B_iY_{s_j}P^{-1})PP^{-1}Y^{\mathrm{T}}_{d_j}B_i^{\mathrm{T}}+ A_{d_i}WA^{\mathrm{T}}_{d_i} \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {P+PP^{-1}Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i}&{}0&{}{-\, \frac{1}{\beta }W}&{}{{{(*)}^{\mathrm{T}}}}\\ {C_iP}+C_iPP^{-1}Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i&{}0&{}0&{}{-\, I} \end{array}} \right) <0, \end{aligned}$$
(45)

with \(K_{d_j}=Y_{d_j}P^{-1}\) and \(K_{s_j}=Y_{s_j}P^{-1}.\) Then, (45) yields

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} {(I+B_iK_{d_j})}P{(A_i+B_iK{s_j})^{\mathrm{T}}} \\ + {(A_i+B_iK{s_j})}{P}{(I+B_iK_{d_j})^{\mathrm{T}}}\\ + {A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}} \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}\\ {P{(I+B_iK_{d_j})}^{\mathrm{T}}}&{}0&{}{-\, \frac{1}{\beta }W}&{}{{{(*)}^{\mathrm{T}}}}\\ {C_iP{(I+B_iK_{d_j})}^{\mathrm{T}}}&{}0&{}0&{}{-\, I} \end{array}} \right) < 0. \end{aligned}$$
(46)

Pre- and post-multiply both sides of (46) by \(\left( {\begin{array}{ccc} {{(I+B_iK_{d_j})}^{-1}}&{}0&{}0\\ 0&{}I&{}0\\ 0&{}0&{}I \end{array}} \right) \) and \(\left( {\begin{array}{ccc} {{(I+B_iK_{d_j})}^{-T}}&{}0&{}0\\ 0&{}I&{}0\\ 0&{}0&{}I \end{array}} \right), \) respectively, and we have

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} P{{({A_i}+B_iK_{s_j})^{\mathrm{T}}}}{{({I}+B_iK_{d_j})^{-T}}} \\ + {{({I}+B_iK_{d_j})^{-1}}}{{({A_i}+B_iK_{s_j})}}P\\ +{{({I}+B_iK_{d_j})^{-1}}}{A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}}{{({I}+B_iK_{d_j})^{-T}}} \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}{{(I+B_iK_{d_j})}^{-T}}&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {P}&{}0&{}{-\, \frac{1}{\beta }W}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {C_iP}&{}0&{}0&{}{-\, I} \end{array}} \right) < 0 \end{aligned}$$
(47)

or, in a more compact form,

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} P{{({A_i}+B_iK_{s_j})^{\mathrm{T}}}}{E^{T}_{ij}}+ {E_{ij}}{{({A_i}+B_iK_{s_j})}}{P}\\ +{E_{ij}}{A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}}{E^{T}_{ij}} \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}{E^{T}_{ij}}&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {P}&{}0&{}{-\, \frac{1}{\beta }W}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {C_iP}&{}0&{}0&{}{-\, I} \end{array}} \right) < 0. \end{aligned}$$
(48)

By multiplying both sides of (48) by \(\left( {\begin{array}{cccc} Q&{} 0&{} 0&{} 0\\ 0&{} I&{} 0&{} 0\\ 0&{} 0&{} I&{} 0\\ 0&{} 0&{} 0&{} I \end{array}} \right), \) we obtain

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} {{({A_i}+B_iK_{s_i})^{\mathrm{T}}}}{E^{T}_{ii}}Q+ Q{E_{ii}}{{({A_i}+B_iK_{s_i})}}\\ + Q{E_{ii}}{A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}}{E^{T}_{ii}}Q \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}{E^{T}_{ii}}Q&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {I}&{}0&{}{-\, \frac{1}{\beta }W}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {C_i}&{}0&{}0&{}{-\, I} \end{array}} \right) < 0, \end{aligned}$$
(49)

\(i=1, 2, 3\ldots , r\,\), and

$$\begin{aligned}&\left( {\begin{array}{cccc} \left( {\begin{array}{c} {{({A_i}+B_iK_{s_j})^{\mathrm{T}}}}{E^{T}_{ij}}Q+ Q{E_{ij}}{{({A_i}+B_iK_{s_j})}}\\ + Q{E_{ij}}{A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}}{E^{T}_{ij}}Q \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}{E^{T}_{ii}}Q&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {I}&{}0&{}{-\, \frac{1}{\beta }W}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {C_i}&{}0&{}0&{}{-\, I} \end{array}} \right) \nonumber \\&\quad +\,\left( {\begin{array}{cccc} \left( {\begin{array}{c} {{({A_j}+B_jK_{s_i})^{\mathrm{T}}}}{E^{T}_{ji}}Q+ Q{E_{ji}}{{({A_j}+B_jK_{s_i})}}\\ + Q{E_{ji}}{A_{{d}_j}}W{A^{\mathrm{T}}_{{d}_j}}{E^{T}_{ji}}Q \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {{B^{\mathrm{T}}_w}}{E^{T}_{ji}}Q&{}{-\, \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {I}&{}0&{}{-\, \frac{1}{\beta }W}&{} \,{{{(*)}^{\mathrm{T}}}}\\ {C_i}&{}0&{}0&{}{-\, I} \end{array}} \right) < 0, \end{aligned}$$
(50)

\(i<j \le r\). Apply the Schur complement to (49)–(50), and rearrange them; we then have

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_i})^{\mathrm{T}}{E^{\mathrm{T}}_{ii}}Q +Q{E_{ii}} ({A_i}+B_iK_{s_i})\\ + QE_{ii}A_{d_i}WA^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ii}Q+ {\beta }W^{-1}+C^{\mathrm{T}}_iC_i \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ B^{\mathrm{T}}_wE^{\mathrm{T}}_{ii}Q&{}{-\, {\gamma ^2}I} \end{array}} \right) < 0, \end{aligned}$$
(51)

\(i=1, 2, 3\ldots , r\), and

$$\begin{aligned}&\left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q +Q{E_{ij}} ({A_i}+B_iK_{s_j})\\ + QE_{ij}A_{d_i}WA^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q + {\beta }W^{-1}+C^{\mathrm{T}}_iC_i \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ B^{\mathrm{T}}_wE^{\mathrm{T}}_{ij}Q&{}{- {\gamma ^2}I} \end{array}} \right) \nonumber \\&\quad +\,\left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{j}}+B_jK_{s_i})^{\mathrm{T}}{E^{\mathrm{T}}_{ji}}Q +Q{E_{ji}} ({A_j}+B_jK_{s_i})\\ + QE_{ji}A_{d_j}WA^{\mathrm{T}}_{d_j}E^{\mathrm{T}}_{ji}Q + {\beta }W^{-1}+C^{\mathrm{T}}_jC_j \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ B^{\mathrm{T}}_wE^{\mathrm{T}}_{ji}Q&{}{- {\gamma ^2}I} \end{array}} \right) < 0, \end{aligned}$$
(52)

\(i<j \le r\). From (51)–(52), it is clear that

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q +Q{E_{ij}} ({A_i}+B_iK_{s_j})\\ + QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q + {\beta }S+C^{\mathrm{T}}_iC_i \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ B^{\mathrm{T}}_wE^{\mathrm{T}}_{ij}Q&{}{- {\gamma ^2}I} \end{array}} \right) < 0, \end{aligned}$$
(53)

where \(W={S^{-1}}\) and \(i, j = 1, 2,\ldots , r\). As (53) is less than zero, \(\mu _n\ge 0\) and \(\sum \nolimits _{n = 1}^r {\mu _n} = 1\), (39) becomes

$$\begin{aligned} \dot{V} \left( {x(t)} \right) \le - {z^{\mathrm{T}}}(t)z(t) + {\gamma ^2}{w^{\mathrm{T}}}(t)w(t). \end{aligned}$$
(54)

Integrating both sides of (54) yields

$$\begin{aligned} \int _0^{{T_{\mathrm{f}}}} {\dot{V}\left( {x(t)} \right) } \,\mathrm{d}t \le \int _0^{{T_{\mathrm{f}}}} {\Big [ {- {{z}^{\mathrm{T}}}}(t)z(t)\, + {\gamma ^2}{{w}^{\mathrm{T}}}(t){w(t)} \Big ]\mathrm{d}t}, \end{aligned}$$
(55)
$$\begin{aligned} V\left( {x({T_{\mathrm{f}}})} \right) - V\left( {x(0)} \right) \, \le \int _0^{{T_{\mathrm{f}}}} {\Big [ {- {{z}^{\mathrm{T}}}}(t)} z(t) + {\gamma ^2}{{w}^{\mathrm{T}}}(t) {w(t)} \Big ]\mathrm{d}t. \end{aligned}$$
(56)

As \(V(x(0)) = 0\) and \(V\left( {x({T_{\mathrm{f}}})} \right) \ge 0\) for all, \({T_{\mathrm{f}}} \ne 0,\) we have

$$\begin{aligned} \int _0^{{T_{\mathrm{f}}}} {{{z}^{\mathrm{T}}}(t)} z(t)\,\mathrm{d}t\, \le {\gamma ^2}\left[ {\int _0^{{T_{\mathrm{f}}}} {{{w}^{\mathrm{T}}}(t)w(t)}} \mathrm{d}t\right] . \end{aligned}$$
(57)

Hence, the inequality (8) holds. This is the case when \({{w}}(t) = 0\), and (54) becomes \(\dot{V}(t) \le - {z^{\mathrm{T}}}(t)z(t) \le 0\). Therefore, the system (14) is asymptotically stable, and (b) is achieved. This completes the proof. \(\square \)

Appendix 2: Proof of Theorem 2

Proof

Choose the quadratic Lyapunov–Krasovskii functional V(x(t)) as

$$\begin{aligned} V\left( {x(t)} \right) = {x^{\mathrm{T}}}(t)Qx(t) + \beta \int _{t-\tau (t)}^{t}x^{\mathrm{T}}(V)Sx(V)\mathrm{d}V, \end{aligned}$$
(58)

where \(Q = {P^{- 1}}>0, S=W^{-1}>0\) and \(\beta =\frac{1}{1-\tau _d}\). Differentiate \(V\left( {x(t)} \right) \) along the closed-loop system (24); from (36), we have

$$\begin{aligned} \dot{V}\left( {x(t)} \right)& = {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \Big [ {{{x}^{\mathrm{T}}}(t)} \Big (({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q\nonumber \\&\quad +\,Q{E_{ij}} ({A_i}+B_iK_{s_j})+ {\beta }S\Big )x(t)+{x}^{\mathrm{T}}\big (t-{\tau }(t)\big ){A^{\mathrm{T}}_{d_{i}}}{E^{\mathrm{T}}_{ij}}Qx(t)\nonumber \\&\quad +\,x^{\mathrm{T}}(t)QE_{ij}A_{{{d_{i}}}}x\big (t-{\tau }(t)\big )- \beta \big (1-{\dot{\tau }{(t)}}\big )x^{\mathrm{T}}\big (t-\tau (t)\big )Sx\big (t-{\tau }(t)\big )\nonumber \\&\quad +\,\tilde{w}^{\mathrm{T}}(t)\tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ij}Qx(t)+x^{\mathrm{T}}(t)QE_{ij}\tilde{B}_{w_i}\tilde{w}(t)\Big ]\nonumber \\& \le {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \Big [{{{x}^{\mathrm{T}}}(t)} \Big (({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q\nonumber \\&\quad +\,Q{E_{ij}} ({A_i}+B_iK_{s_j})+ {\beta }S\Big )x(t) + x^{\mathrm{T}}(t)QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Qx(t)\nonumber \\&\quad +\,x^{\mathrm{T}}\big (t-\tau (t)\big )Sx\big (t-\tau (t)\big )-x^{\mathrm{T}}\big (t-\tau (t)\big )Sx\big (t-\tau (t)\big )\nonumber \\&\quad +\,\tilde{w}^{\mathrm{T}}(t)\tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ij}Qx(t)+x^{\mathrm{T}}(t)QE_{ij}\tilde{B}_{w_i}\tilde{w}(t)\Big ]\nonumber \\& = {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \Big [{{{x}^{\mathrm{T}}}(t)} \Big (({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q+Q{E_{ij}} ({A_i}+B_iK_{s_j})\nonumber \\&\quad +\,QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q+ {\beta }S\Big )x(t)+ \tilde{w}^{\mathrm{T}}(t)\tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ij}Qx(t) \nonumber \\&\quad +\,x^{\mathrm{T}}(t)QE_{ij}\tilde{B}_{w_i}\tilde{w}(t)\Big ]. \end{aligned}$$
(59)

By adding and subtracting \(- {\tilde{z}^{\mathrm{T}}}(t)\tilde{z}(t)\;+\;{\gamma ^2}\sum \nolimits _{i = 1}^r {\sum \nolimits _{j = 1}^r} {\sum \nolimits _{m = 1}^r} {\sum \nolimits _{n = 1}^r} {{\mu _i}{\mu _j}{\mu _m}{\mu _n}} \left[ {\tilde{w}^{\mathrm{T}}}(t)\tilde{w}(t) \right] \) to and from (59), we have

$$\begin{aligned} \dot{V} \left( {x(t)} \right)& = {} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r{\sum \limits _{m = 1}^r{\sum \limits _{n = 1}^r {{\mu _i}{\mu _j}{\mu _m}{\mu _n}}}}} \left[ {\begin{array}{cc} {{{x}^{\mathrm{T}}}(t)}&{{{\tilde{w}}^{\mathrm{T}}}(t)} \end{array}} \right] \nonumber \\&\quad \times \,\left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q +Q{E_{ij}} ({A_i}+B_iK_{s_j})\\ + QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q+ {\beta }S+C^{\mathrm{T}}_iC_i \end{array}} \right) &{}\;{{{(*)}^{\mathrm{T}}}}\\ \tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ij}Q&{}{- {\gamma ^2}I} \end{array}} \right) \left[ {\begin{array}{c} {x(t)}\\ {\tilde{w}(t)} \end{array}} \right] \nonumber \\&\quad -\,{\tilde{z}^{\mathrm{T}}}(t)\tilde{z}(t) + {\gamma ^2}\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r{\sum \limits _{m = 1}^r{\sum \limits _{n = 1}^r {{\mu _i}{\mu _j}{\mu _m}{\mu _n}}}}}[{\tilde{w}^{\mathrm{T}}}(t)\tilde{w}(t)], \end{aligned}$$
(60)

where

$$\begin{aligned} \tilde{z}(t) = \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {{\mu _i}{\mu _j}}} \tilde{C}_ix(t). \end{aligned}$$
(61)

Next, let us consider Theorem 2. We apply the Schur complement and the algebraic inequality (42) and in turn have

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} {P}{A^{\mathrm{T}}_i} + {A_i}{P} + Y_{s_j}^TB_i^{\mathrm{T}} + B_iY_{s_j} + B_i{Y_{d_j}}A^{\mathrm{T}}_i \\ + A_i{Y_{d_j}^{\mathrm{T}}}{B_i^{\mathrm{T}}} + {A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}}\\ + B_iY_{s_j}P^{-1}Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i + B_iY_{d_j}P^{-1}Y_{s_j}^TB^{\mathrm{T}}_i \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} {{{(*)}^{\mathrm{T}}}} \\ {{\tilde{B}^{\mathrm{T}}_{w_i}}}&{}{- \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} {{{(*)}^{\mathrm{T}}}}\\ {P+Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i}&{}0&{}{- \frac{1}{\beta }W}&{} {{{(*)}^{\mathrm{T}}}}\\ {\tilde{C}_iP}+\tilde{C}_iY^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i&{}0&{}0&{}{- I} \end{array}} \right) < 0 \end{aligned}$$
(62)

or

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} {P} (A_i+B_iY_{s_j}P^{-1})^{\mathrm{T}} + (A_i + B_iY_{s_j}P^{-1})P\\ +B_iY_{d_j}P^{-1}P(A_i+B_iY_{s_j}P^{-1})^{\mathrm{T}}\\ +(A_i+B_iY_{s_j}P^{-1})PP^{-1}Y^{\mathrm{T}}_{d_j}B_i^{\mathrm{T}}+ A_{d_i}WA^{\mathrm{T}}_{d_i} \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} {{{(*)}^{\mathrm{T}}}} \\ {{\tilde{B}^{\mathrm{T}}_{w_i}}}&{}{- \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} {{{(*)}^{\mathrm{T}}}}\\ {P+PP^{-1}Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i}&{}0&{}{- \frac{1}{\beta }W}&{} {{{(*)}^{\mathrm{T}}}}\\ {\tilde{C}_iP}+\tilde{C}_iPP^{-1}Y^{\mathrm{T}}_{d_j}B^{\mathrm{T}}_i&{}0&{}0&{}{- I} \end{array}} \right) <0, \end{aligned}$$
(63)

with \(K_{d_j}=Y_{d_j}P^{-1}\) and \(K_{s_j}=Y_{s_j}P^{-1}.\) Pre- and post-multiply both sides of (63) by \(\left( {\begin{array}{ccc} {{(I+B_iK_{d_j})}^{-1}}&{}0&{}0\\ 0&{}I&{}0\\ 0&{}0&{}I \end{array}} \right) \) and \(\left( {\begin{array}{ccc} {{(I+B_iK_{d_j})}^{-T}}&{}0&{}0\\ 0&{}I&{}0\\ 0&{}0&{}I \end{array}} \right), \) respectively, and we have

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} P{{({A_i}+B_iK_{s_j})^{\mathrm{T}}}}{E^{T}_{ij}}+ {E_{ij}}{{({A_i}+B_iK_{s_j})}}{P}\\ + {E_{ij}}{A_{{d}_i}}W{A^{\mathrm{T}}_{{d}_i}}{E^{T}_{ij}} \end{array}} \right) &{}{{{(*)}^{\mathrm{T}}}}&{}{{{(*)}^{\mathrm{T}}}}&{} {{{(*)}^{\mathrm{T}}}}\\ {{\tilde{B}^{\mathrm{T}}_{w_i}}}{E^{T}_{ij}}&{}{- \gamma ^2{I}}&{}{{{(*)}^{\mathrm{T}}}}&{} {{{(*)}^{\mathrm{T}}}}\\ {P}&{}0&{}{- \frac{1}{\beta }W}&{} {{{(*)}^{\mathrm{T}}}}\\ {\tilde{C}_iP}&{}0&{}0&{}{- I} \end{array}} \right) < 0. \end{aligned}$$
(64)

By multiplying both sides of (64) by \(\left( {\begin{array}{cccc} Q &{}0 &{}0 &{}0\\ 0 &{}I &{}0 &{}0\\ 0 &{}0 &{}I &{}0\\ 0 &{}0 &{}0 &{}I \end{array}} \right), \) applying the Schur complement and rearranging them, we have

$$\begin{aligned} \left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_i})^{\mathrm{T}}{E^{\mathrm{T}}_{ii}}Q +Q{E_{ii}} ({A_i}+B_iK_{s_i})\\ + QE_{ii}A_{d_i}WA^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ii}Q+ {\beta }W^{-1}+\tilde{C}^{\mathrm{T}}_i\tilde{C}_i \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ \tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ii}Q&{}{- {\gamma ^2}I} \end{array}} \right) < 0,\quad i=1, 2, 3\ldots , r, \end{aligned}$$
(65)

and

$$\begin{aligned}&\left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q +Q{E_{ij}} ({A_i}+B_iK_{s_j})\\ + QE_{ij}A_{d_i}WA^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q+ {\beta }W^{-1}+\tilde{C}^{\mathrm{T}}_i\tilde{C}_i \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ \tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ij}Q&{}{- {\gamma ^2}I} \end{array}} \right) \nonumber \\&\quad +\,\left( {\begin{array}{cccc} \left( {\begin{array}{c} ({{A}_{j}}+B_jK_{s_i})^{\mathrm{T}}{E^{\mathrm{T}}_{ji}}Q +Q{E_{ji}} ({A_j}+B_jK_{s_i})\\ + QE_{ji}A_{d_j}WA^{\mathrm{T}}_{d_j}E^{\mathrm{T}}_{ji}Q+ {\beta }W^{-1}+\tilde{C}^{\mathrm{T}}_j\tilde{C}_j \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ \tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ji}Q&{}{- {\gamma ^2}I} \end{array}} \right) < 0, \end{aligned}$$
(66)

\(i<j \le r\). Using (65)–(66) and the fact that

$$\begin{aligned} \sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{\sum \limits _{m = 1}^r}{\sum \limits _{n = 1}^r}{{\mu _i}{\mu _j}{\mu _m}{\mu _n}}M^{\mathrm{T}}_{ij}N_{mn} \le \frac{1}{2}\sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{{\mu _i}{\mu _j}} \left[ M^{\mathrm{T}}_{ij}M_{ij}+N_{ij}N^{\mathrm{T}}_{ij}\right] , \end{aligned}$$
(67)

we have

$$\begin{aligned} \left( {\begin{array}{cc} \left( {\begin{array}{c} ({{A}_{i}}+B_iK_{s_j})^{\mathrm{T}}{E^{\mathrm{T}}_{ij}}Q +Q{E_{ij}} ({A_i}+B_iK_{s_j})\\ + QE_{ij}A_{d_i}S^{-1}A^{\mathrm{T}}_{d_i}E^{\mathrm{T}}_{ij}Q+ {\beta }S+\tilde{C}^{\mathrm{T}}_i\tilde{C}_i \end{array}} \right) &{} {{{(*)}^{\mathrm{T}}}}\\ \tilde{B}^{\mathrm{T}}_{w_i}E^{\mathrm{T}}_{ij}Q&{}{- {\gamma ^2}I} \end{array}} \right) < 0, \end{aligned}$$
(68)

where \(W={S^{-1}}\) and \(i, j = 1, 2,\ldots , r\). As (68) is less than zero, \(\mu _n\ge 0\) and \(\sum \nolimits _{n = 1}^r {\mu _n} = 1\), (60) becomes

$$\begin{aligned} \dot{V} \left( {x(t)} \right) \le - {\tilde{z}^{\mathrm{T}}}(t)\tilde{z}(t) + {\gamma ^2}\sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{\sum \limits _{m = 1}^r}{\sum \limits _{n = 1}^r}{{\mu _i}{\mu _j}{\mu _m}{\mu _n}}[{\tilde{w}^{\mathrm{T}}}(t)\tilde{w}(t)]. \end{aligned}$$
(69)

Integrating both sides of (69) yields

$$\begin{aligned} \int _0^{{T_{\mathrm{f}}}} \dot{V}\left( {x(t)} \right) \mathrm{d}t& \le {} \int _0^{{T_{\mathrm{f}}}} {\left[ {- {{\tilde{z}}^{\mathrm{T}}}} \right. (t)}\tilde{z}(t)\nonumber \\&\left.\quad +\,{\gamma ^2}\sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{\sum \limits _{m = 1}^r}{\sum \limits _{n = 1}^r}{{\mu _i}{\mu _j}{\mu _m}{\mu _n}}[{\tilde{w}^{\mathrm{T}}}(t)\tilde{w}(t)] \right ] \mathrm{d}t, \end{aligned}$$
(70)
$$\begin{aligned} V\left( {x({T_{\mathrm{f}}})} \right) - V\left( {x(0)} \right)& \le {} \int _0^{{T_{\mathrm{f}}}}{\left[ {- {{\tilde{z}}^{\mathrm{T}}}} \right. (t)} \tilde{z}(t)\nonumber \\&\left.\quad +\,{\gamma ^2}\sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{\sum \limits _{m = 1}^r}{\sum \limits _{n = 1}^r}{{\mu _i}{\mu _j}{\mu _m}{\mu _n}}[{\tilde{w}^{\mathrm{T}}}(t)\tilde{w}(t)] \right ] \mathrm{d}t. \end{aligned}$$
(71)

As \(V(x(0)) = 0\) and \(V\left( {x({T_{\mathrm{f}}})} \right) \ge 0\) for all, \({T_{\mathrm{f}}} \ne 0,\) we have

$$\begin{aligned}&\int _0^{{T_{\mathrm{f}}}} {{{\tilde{z}}^{\mathrm{T}}}(t)} \tilde{z}(t)\mathrm{d}t\nonumber \\&\quad \le {\gamma ^2}\Big [\int _0^{{T_{\mathrm{f}}}}\sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{\sum \limits _{m = 1}^r}{\sum \limits _{n = 1}^r}{{\mu _i}{\mu _j}{\mu _m}{\mu _n}}[{\tilde{w}^{\mathrm{T}}}(t)\tilde{w}(t)] \mathrm{d}t\Big ]. \end{aligned}$$
(72)

Putting \(\tilde{z}(t)\) and \(\tilde{w}(t)\), respectively, given in (61) and (24) into (72) and using the fact that \(\Vert F(x(t),t)\Vert \le \rho , {\lambda }^2 = 1 + \rho ^2 \sum \nolimits _{i = 1}^r \sum \nolimits _{j = 1}^r \left[ \parallel {H^{\mathrm{T}}_{2_i}H_{2_j}}\parallel \right] \) and (67), we have

$$\begin{aligned}&\int _0^{{T_{\mathrm{f}}}} \sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{{\mu _i}{\mu _j}} \Big (2\lambda ^2x^{\mathrm{T}}(t)C^{\mathrm{T}}_iC_ix(t) +2\lambda ^2\rho ^2x^{\mathrm{T}}(t)H^{\mathrm{T}}_{4_i}H_{4_i}x(t)\Big )\mathrm{d}t\nonumber \\&\quad \le \, {\gamma ^2}{\lambda ^2}\Big [\int _0^{{T_{\mathrm{f}}}}[{{w}^{\mathrm{T}}}(t){w}(t)] \mathrm{d}t\Big ]. \end{aligned}$$
(73)

By adding and subtracting

$$\begin{aligned} {\lambda }^2{z}^{\mathrm{T}}(t) {z}(t)& = {} {\lambda }^2 \sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{{\mu _i}{\mu _j}} \Big (x^{\mathrm{T}}(t) {\big (C_i+F \big (x(t),t \big )H_{4_i} \big )}^{\mathrm{T}}\nonumber \\&\quad \times \,{\big (C_i+F \big (x(t),t \big )H_{4_i} \big )} x(t)\Big ) \end{aligned}$$
(74)

to and from (73), one obtains

$$\begin{aligned}&\int _0^{{T_{\mathrm{f}}}} \Big [{\lambda }^2{z}^{\mathrm{T}}(t){z}(t) + \sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{{\mu _i}{\mu _j}} \Big [ \Big (2\lambda ^2x^{\mathrm{T}}(t)C^{\mathrm{T}}_iC_ix(t)\nonumber \\&\quad +\,2\lambda ^2\rho ^2x^{\mathrm{T}}(t)H^{\mathrm{T}}_{4_i}H_{4_i}x(t)-\Big ({\lambda }^2 \Big (x^{\mathrm{T}}(t) {\big (C_i+F \big (x(t),t \big )H_{4_i} \big )}^{\mathrm{T}}\nonumber \\&\quad \times \,{\big (C_i+F \big (x(t),t \big )H_{4_i} \big )} x(t)\Big )\Big )\Big ] \Big ] \mathrm{d}t\le {\gamma ^2}{\lambda }^2\Big [ \int _0^{{T_{\mathrm{f}}}}[{{w}^{\mathrm{T}}}(t){w}(t)] \mathrm{d}t\Big ]. \end{aligned}$$
(75)

From the triangular inequality and the fact that \(\Vert F(x(t),t)\Vert \le \rho \), we have

$$\begin{aligned}&{\lambda }^2\sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{{\mu _i}{\mu _j}} \Big [ \Big (x^{\mathrm{T}}(t) {\big (C_i+F \big (x(t),t \big )H_{4_i} \big )}^{\mathrm{T}}\times {\big (C_i+F \big (x(t),t \big )H_{4_i}\big )} x(t)\Big )\Big ] \nonumber \\&\quad \le \,\sum \limits _{i = 1}^r{\sum \limits _{j = 1}^r}{{\mu _i}{\mu _j}} \Big [ 2\lambda ^2x^{\mathrm{T}}(t)C^{\mathrm{T}}_iC_ix(t)+2\lambda ^2\rho ^2x^{\mathrm{T}}(t)H^{\mathrm{T}}_{4_i}H_{4_i}x(t)\Big ]. \end{aligned}$$
(76)

Applying (76)–(75), we have

$$\begin{aligned} \int _0^{{T_{\mathrm{f}}}} {{{z}^{\mathrm{T}}}(t)} z(t)\,\mathrm{d}t\, \le {\gamma ^2}\left[ {\int _0^{{T_{\mathrm{f}}}} {{{w}^{\mathrm{T}}}(t)w(t)}} \mathrm{d}t\right] . \end{aligned}$$
(77)

Hence, the inequality (8) holds. This is the case when \({{w}}(t) = 0\), and (69) becomes \(\dot{V}(t) \le - {z^{\mathrm{T}}}(t)z(t) \le 0\). Therefore, the closed-loop system (24) is asymptotically stable, and (b) is achieved. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruangsang, S., Assawinchaichote, W. A novel robust \(H_{\infty }\) fuzzy state feedback plus state-derivative feedback controller design for nonlinear time-varying delay systems. Neural Comput & Applic 31, 6303–6318 (2019). https://doi.org/10.1007/s00521-018-3452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3452-y

Keywords

Navigation