Skip to main content
Log in

Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Air pollutants such as benzene (\(\text {C}_6\text {H}_6\)) have accelerated the rate of cancer among human beings. Currently, atmospheric contamination is measured using spatially separated networks with limited sensors. However, the expenses involving multiple sensors with varying sizes limit the operational efficiency. Therefore, in this paper, a novel multi-objective regression model is proposed to predict benzene concentration in the ambient air pollution data, without need to deploy actual sensors for benzene detection. It is possible because there is a relation among various atmospheric gasses and thus regression can be performed to measure \(\text {C}_6\text {H}_6\) if the concentration level of other gasses is known. Proposed technique utilizes adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) to predict \(\text {C}_6\text {H}_6\) density in the air. PSO is employed to enhance the accuracy of ANFIS for runtime parameter tuning by calculating multi-objective fitness function which involves accuracy, root mean squared error and correlation (r). The proposed technique is tested on well-known publicly available air pollution datasets and on real-time primary dataset for quantitative analysis. Experimental results indicate that the proposed method consistently outperforms over available methods to predict \(\text {C}_6\text {H}_6\) concentration in the atmosphere. Thus, it is well suitable to build self-dependable time and cost-effective benzene prediction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Vlachokostas C, Achillas C, Chourdakis E, Moussiopoulos N (2011) Combining regression analysis and air quality modelling to predict benzene concentration levels. Atmos Environ 45(15):2585–2592

    Article  Google Scholar 

  2. Merbitz H, Fritz S, Schneider C (2012) Mobile measurements and regression modeling of the spatial particulate matter variability in an urban area. Sci Total Environ 438:389–403

    Article  Google Scholar 

  3. Kumar P, Jain S, Gurjar B, Sharma P, Khare M, Morawska L, Britter R (2013) New directions: can a blue sky return to Indian megacities? Atmos Environ 71:198–201

    Article  Google Scholar 

  4. Arroyo V, Díaz J, Ortiz C, Carmona R, Sáez M, Linares C (2016) Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain). Environ Res 145:162–168

    Article  Google Scholar 

  5. National park service, sources of air pollution. https://www.nature.nps.gov/air/aqbasics/sources.cfm. Accessed 11 Mar 2017

  6. Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen Z, Hoffmann B, Stafoggia M, Samoli E, Weinmayr G, Dimakopoulou K et al (2016) Particulate matter air pollution components and risk for lung cancer. Environ Int 87:66–73

    Article  Google Scholar 

  7. Fecht D, Hansell AL, Morley D, Dajnak D, Vienneau D, Beevers S, Toledano MB, Kelly FJ, Anderson HR, Gulliver J (2016) Spatial and temporal associations of road traffic noise and air pollution in London: implications for epidemiological studies. Environ Int 88:235–242

    Article  Google Scholar 

  8. Gallagher J, Baldauf R, Fuller CH, Kumar P, Gill LW, McNabola A (2015) Passive methods for improving air quality in the built environment: a review of porous and solid barriers. Atmos Environ 120:61–70

    Article  Google Scholar 

  9. Kumar P, Martani C, Morawska L, Norford L, Choudhary R, Bell M, Leach M (2016) Indoor air quality and energy management through real-time sensing in commercial buildings. Energy Build 111:145–153

    Article  Google Scholar 

  10. Hasenfratz D, Saukh O, Thiele L (2012) On-the-fly calibration of low-cost gas sensors. In: European conference on wireless sensor networks, Trento, Italy, February 15–17, 2012, Springer, pp 228–244

  11. Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Di Sabatino S, Bell M, Norford L, Britter R (2015) The rise of low-cost sensing for managing air pollution in cities. Environ Int 75:199–205

    Article  Google Scholar 

  12. De Vito S, Piga M, Martinotto L, Di Francia G (2009) Co, \(\text{ NO }_{2}\) and \(\text{ NO }_{\rm x}\) urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sens Actuators B Chem 143(1):182–191

    Article  Google Scholar 

  13. Mead M, Popoola O, Stewart G, Landshoff P, Calleja M, Hayes M, Baldovi J, McLeod M, Hodgson T, Dicks J et al (2013) The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos Environ 70:186–203

    Article  Google Scholar 

  14. Dewan MW, Huggett DJ, Liao TW, Wahab MA, Okeil AM (2016) Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Mater Des 92:288–299

    Article  Google Scholar 

  15. Gou J, Hou F, Chen W, Wang C, Luo W (2015) Improving Wang–Mendel method performance in fuzzy rules generation using the fuzzy C-means clustering algorithm. Neurocomputing 151:1293–1304

    Article  Google Scholar 

  16. Jiang Y, Deng Z, Choi K-S, Chung F-L, Wang S (2016) A novel multi-task TSK fuzzy classifier and its enhanced version for labeling-risk-aware multi-task classification. Inf Sci 357:39–60

    Article  MathSciNet  Google Scholar 

  17. Cerrada M, Zurita G, Cabrera D, Sánchez R-V, Artés M, Li C (2016) Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech Syst Signal Process 70:87–103

    Article  Google Scholar 

  18. Kocadağlı O (2015) A novel hybrid learning algorithm for full Bayesian approach of artificial neural networks. Appl Soft Comput 35:52–65

    Article  Google Scholar 

  19. Appelhans T, Mwangomo E, Hardy DR, Hemp A, Nauss T (2015) Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat Stat 14:91–113

    Article  MathSciNet  Google Scholar 

  20. Shen Y, Han B, Braverman E (2016) Stability of the elastic net estimator. J Complex 32(1):20–39

    Article  MathSciNet  MATH  Google Scholar 

  21. Maziejuk M, Szczurek A, Maciejewska M, Pietrucha T, Szyposzyńska M (2016) Determination of benzene, toluene and xylene concentration in humid air using differential ion mobility spectrometry and partial least squares regression. Talanta 152:137–146

    Article  Google Scholar 

  22. Norhayati I, Rashid M (2017) Adaptive neuro-fuzzy prediction of carbon monoxide emission from a clinical waste incineration plant. Neural Comput Appl 1–13. doi:10.1007/s00521-017-2921-z

  23. Hossein R, Rahmati M, Modarress H (2017) Application of ANFIS and MLR models for prediction of methane adsorption on X and Y faujasite zeolites: effect of cations substitution. Neural Comput Appl 28(2):301–312

    Article  Google Scholar 

  24. Braga I, Monard MC (2015) Improving the kernel regularized least squares method for small-sample regression. Neurocomputing 163:106–114

    Article  Google Scholar 

  25. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  26. Lin C-T, Lee CG (1996) Neural fuzzy systems. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  27. Moghaddamnia A, Gousheh MG, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32(1):88–97

    Article  Google Scholar 

  28. De Vito S, Massera E, Piga M, Martinotto L, Di Francia G (2008) On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens Actuators B Chem 129(2):750–757

    Article  Google Scholar 

  29. Sugeno M (1985) An introductory survey of fuzzy control. Inf Sci 36(1–2):59–83

    Article  MathSciNet  MATH  Google Scholar 

  30. Yen J, Langari R (1998) Fuzzy logic: intelligence, control, and information. Prentice-Hall, Inc, Upper Saddle River

    Google Scholar 

  31. Kennedy J (2011) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, Berlin, pp 760–766

  32. C6H6-B.csv national institute of standards and technology. https://www.nist.gov/file/36031. Accessed 17 Mar 2017

  33. Benzene PubChem open chemistry database. https://pubchem.ncbi.nlm.nih.gov/compound/benzene. Accessed 17 Mar 2017

  34. C6H6-nrm-part5.test.csv petravidnerova sensorsscikittest. https://github.com/PetraVidnerova/SensorsScikitTest/blob/master/data/C6H6-nrm-part5.test.csv. Accessed 17 Mar 2017

  35. AirBase—the European air quality database. http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8. Accessed 17 Mar 2017

  36. Nacp greenhouse gases multi-source data compilation (2000–2009). https://daac.ornl.gov/NACP/guides/NACP_GHG_Data_Compilation.html. Accessed 17 Mar 2017

Download references

Acknowledgements

Special thanks to Prof. Susheel Mittal, Thapar University, and Modelling Air Pollution and Networking (MAPAN) project by Indian Institute of Tropical Meteorology (IITM) Pune, India, for providing the ambient air dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husanbir Singh Pannu.

Ethics declarations

Conflict of interest

There is no conflict of interest involved in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannu, H.S., Singh, D. & Malhi, A.K. Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Comput & Applic 31, 2195–2205 (2019). https://doi.org/10.1007/s00521-017-3181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3181-7

Keywords

Navigation