Skip to main content

An Ensemble Approach of Multi-objective Differential Evolution Based Benzene Detection

  • Conference paper
  • First Online:
Futuristic Trends in Network and Communication Technologies (FTNCT 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1395))

  • 597 Accesses

Abstract

Benzene is among the most common and menacing contaminant in the air that accelerate the rate of severe health issues among people. Presently, environmental sensor-based networks are utilized to monitor the quality of the air. The cost including numerous sensors with dynamic network sizes limit the operational and monitoring efficiency. In the proposed study, the advanced non-linear problem-solving principles of Adaptive Neuro-Fuzzy Inference System (ANFIS) and Differential Evolution (DE) algorithm is utilized to monitor the quality of the air and to predict the scale of \(C_{6}H_{6}\) in the surrounding environment of the individual without installing or creating any sensor-based network. The concentration of \(C_{6}H_{6}\) in the air is predicted by utilizing ANFIS through which evaluation of the relationship between several atmospheric gases is accomplished and DE is responsible to optimize the parameters of the ANFIS model for effective prediction accuracy. The prediction performance of the system is evaluated by calculating Accuracy, Coefficient of Determination (\(r^{2}\)), and Root Mean Squared Error (RMSE) on five publicly available datasets. To validate the experimental results of the proposed system, the calculated results are compared with several base-line and hybrid methods of machine learning. The calculated outcomes justify the suitability of building self-reliable cost-effective and time-sensitive air monitoring system for predicting the concentration of benzene in the air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source: https://www.who.int/en/news-room/actualitysheets/detail/encompassing(outside)-air-quality-and-wellbeing.

  2. 2.

    Source: https://www.lung.org/about-us/media/officialstatements/2018-condition-of-the-air.html.

  3. 3.

    https://pubchem.ncbi.nlm.nih.gov/compound/benzene.

  4. 4.

    Source: http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-qualitydatabase-8.

  5. 5.

    Source: https://github.com/PetraVidnerova/SensorsScikitTest/blob/master/data/C6H6-nrm-part5.test.csv.

  6. 6.

    Source: https://daac.ornl.gov/NACP/guides/NACPGHGDataCompilation.html.

  7. 7.

    https://www.nist.gov/file/36031.

References

  1. Raaschou-Nielsen, O., et al.: Particulate matter air pollution components and risk for lung cancer. Environ. Int. 87, 66–73 (2016)

    Article  Google Scholar 

  2. Fecht, D., et al.: Spatial and temporal associations of road traffic noise and air pollution in London: implications for epidemiological studies. Environ. Int. 88, 235–242 (2016)

    Article  Google Scholar 

  3. Shooter, D., Brimblecombe, P.: Air quality indexing. Int. J. Environ. Pollut. 36, 305–323 (2009). https://doi.org/10.1504/ijep.2009.021834. ISSN: 0957–4352

    Article  Google Scholar 

  4. Raipure, S.: Calculating pollution in metropolitan cities using wireless sensor network. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2(12), 293–296 (2014). ISSN: 2321–7782

    Google Scholar 

  5. Kleine Deters, J., Zalakeviciute, R., Gonzalez, M., Rybarczyk, Y.: Modeling PM2.5 urban pollution using machine learning and selected meteorological parameters (2017). Accepted 11 May 2017

    Google Scholar 

  6. Krishna, S., Lakshminarayanachari, K., Pandurangappa, C.: Mathematical modelling of air pollutants emitted from a line source with chemical reaction and mesoscale wind. Int. J. Sci. Eng. Res. 8(5), 48 (2017)

    Google Scholar 

  7. Brandt, J., Christensen, J.H., Frohn, L.M., Zlatev, Z.: Operational air pollution forecast modelling using the THOR system. Department of Atmospheric Environment, National Environmental Research Institute (2002)

    Google Scholar 

  8. Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  9. Lin, C.-T., Lee, C.G.: Neural Fuzzy Systems. Prentice-Hall Inc., Upper Saddle River (1996)

    Google Scholar 

  10. Moghaddamnia, A., Gousheh, M.G., Piri, J., Amin, S., Han, D.: Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour. 32(1), 88–97 (2009)

    Article  Google Scholar 

  11. Liu, M., Ling, Y.Y.: Using fuzzy neural network approach to estimate contractors’ markup. Build. Environ. 38(11), 1303–1308 (2003)

    Article  Google Scholar 

  12. Storn, R., Price, K.: Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. ICSI, Berkeley (1995)

    MATH  Google Scholar 

  13. Sha, D.Y., Hsu, C.Y.: A new particle swarm optimization for the open shop scheduling problem. Comput. Oper. Res. 35(10), 3243–3261 (2008)

    Article  Google Scholar 

  14. El Ela, A.A.A., Abido, M.A., Spea, S.R.: Optimal power flow using differential evolution algorithm. Electr. Eng. 91(2), 69–78 (2009)

    Article  Google Scholar 

  15. Babu, B.V., Munawar, S.A.: Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem. Eng. Sci. 62(14), 3720–3739 (2007)

    Article  Google Scholar 

  16. Khademi, M.H., Rahimpour, M.R., Jahanmiri, A.: Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexanede hydrogenation and methanol synthesis in a hydrogen-perm selective membrane thermally coupled reactor. Int. J. Hydrog. Energy 35(5), 1936–1950 (2010)

    Article  Google Scholar 

  17. \(C_{6}H_{6}\)-B.csv national institute of standards and technology. https://www.nist.gov/file/36031. Accessed 17 Mar 2017

  18. Benzene PubChem Open Chemistry Database. https://pubchem.ncbi.nlm.nih.gov/compound/benzene. Accessed 17 Mar 2017

  19. \(C_{6}H_{6}\)-nrm-part5.test.csv petravidnerova sensors scikit test. https://github.com/PetraVidnerova/SensorsScikitTest/blob/master/data/C6H6-nrm-part5.test.csv. Accessed 17 Mar 2017

  20. AirBase-The European Air Quality Database. http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-qualitydatabase-8. Accessed 17 Mar 2017

  21. Nacp Greenhouse Gases Multi-Data Compilation (2000–2009). https://daac.ornl.gov/NACP/guides/NACP_GHG_ Data_Compilation.html. Accessed 17 Mar 2017

  22. Park, S., et al.: Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). J. Hazard. Mater. 341, 75–82 (2018)

    Article  Google Scholar 

  23. Li, M., et al.: Prediction of PM2.5 concentration based on the similarity in air quality monitoring network. Build. Environ. 137, 11–17 (2018)

    Article  Google Scholar 

  24. Karatzas, K., et al.: Revisiting urban air quality forecasting: a regression approach. Vietnam J. Comput. Sci. 5(2), 177–184 (2018)

    Article  Google Scholar 

  25. Franceschi, F., Cobo, M., Figueredo, M.: Discovering relationships and forecasting PM10 and PM2. 5 concentrations in Bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering. Atmos. Pollut. Res. 9(5), 912–922 (2018)

    Article  Google Scholar 

  26. Kumar, D.: Evolving differential evolution method with random forest for prediction of air pollution. Procedia Comput. Sci. 132, 824–833 (2018)

    Article  Google Scholar 

  27. Sagayaraj, S., Vetrivelan, N.: Improving air quality management using gradient boosting based hierarchical temporal memory neural networks and fuzzy based classification based regression tree. Int. J. Eng. Technol. 2, 12–17 (2018). https://doi.org/10.14419/ijet.v7i2.9.9229

    Article  Google Scholar 

  28. Pannu, H.S., Singh, D., Malhi, A.K.: Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection. CLEAN-Soil Air Water 46(5), 1700162 (2018)

    Article  Google Scholar 

  29. Pannu, H.S., et al.: Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection. CLEAN-Soil Air Water 46(5), 1700162 (2018)

    Article  MathSciNet  Google Scholar 

  30. Singh, P.K., Paprzycki, M., Bhargava, B., Chhabra, J.K., Kaushal, N.C., Kumar, Y. (eds.): FTNCT 2018. CCIS, vol. 958. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3804-5

    Book  Google Scholar 

  31. Singh, P.K., Bhargava, B.K., Paprzycki, M., Kaushal, N.C., Hong, W.-C. (eds.): Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario’s. AISC, vol. 1132. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40305-8

    Book  Google Scholar 

  32. Muchtar, F., Al-Adhaileh, M.H., Alubady, R., Singh, P.K., Ambar, R., Stiawan, D.: Congestion control for named data networking-based wireless ad hoc network. In: Singh, P.K., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C., Obaidat, M.S. (eds.) Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). LNNS, vol. 121, pp. 121–138. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3369-3_10

    Chapter  Google Scholar 

  33. Reddy, C.S., Raju, K.V.S.N.: An improved fuzzy approach for COCOMO’s effort estimation using gaussian membership function. J. Softw. 4(5), 452–459 (2009)

    Article  Google Scholar 

  34. Zhang, T., et al.: Control of a novel synthetical index for the local indoor air quality by the artificial neural network and genetic algorithm. Sustain. Cities Soc. 51, 101714 (2019)

    Article  Google Scholar 

  35. Zeinalnezhad, M., et al.: Air pollution prediction using semi-experimental regression model and adaptive neuro-fuzzy inference system. J. Clean. Prod. 261, 121218 (2020)

    Article  Google Scholar 

  36. Al-Janabi, S., Mohammad, M., Al-Sultan, A.: A new method for prediction of air pollution based on intelligent computation. Soft Comput. 24(1), 661–680 (2019). https://doi.org/10.1007/s00500-019-04495-1

    Article  Google Scholar 

  37. Fan, J., Knoch, U., Bond21, T.: Application of Rasch measurement theory in language assessment: using measurement to enhance language assessment research and practice. Pap. Lang. Test. Assess. 8(2), 117–142 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behal, V., Singh, R. (2021). An Ensemble Approach of Multi-objective Differential Evolution Based Benzene Detection. In: Singh, P.K., Veselov, G., Vyatkin, V., Pljonkin, A., Dodero, J.M., Kumar, Y. (eds) Futuristic Trends in Network and Communication Technologies. FTNCT 2020. Communications in Computer and Information Science, vol 1395. Springer, Singapore. https://doi.org/10.1007/978-981-16-1480-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1480-4_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1479-8

  • Online ISBN: 978-981-16-1480-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics