Skip to main content
Log in

On passivity and robust passivity for discrete-time stochastic neural networks with randomly occurring mixed time delays

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, the passivity analysis problem is investigated for a class of discrete-time stochastic neural networks (DSNNs) with randomly occurring mixed time delays (ROMDs). The mixed delays comprise time-varying discrete delays, infinite-distributed delays as well as finite-distributed delays. A set of Bernoulli-distributed white sequences is used to account for the random nature of the occurrence of the mixed time delays. In addition, stochastic disturbances are taken into consideration to describe the state-dependent noises caused possibly by electronic devices and hardware implementation of neural networks. By using a combination of Lyapunov-Krasovskii functional, free-weighting matrix approach and stochastic analysis technique, we establish sufficient conditions guaranteeing the passivity performance of the underlying DSNNs. Furthermore, a delay-dependent robust passivity criterion is presented to deal with the parameter uncertainties in the DSNNs with ROMDs. A simulation example is provided to verify the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arik S (2014) An improved robust stability result for uncertain neural networks with multiple time delays. Neural Netw 54:1–10

    Article  MATH  Google Scholar 

  2. Arik S (2014) New criteria for global robust stability of delayed neural networks with norm-bounded uncertainties. IEEE Trans Neural Netw Learn Syst 25(6):1045–1052

    Article  Google Scholar 

  3. Balasubramaniam P, Nagamani G (2012) Global robust passivity analysis for stochastic fuzzy interval neural networks with time-varying delays. Exp Syst Appl 39(1):732–742

    Article  Google Scholar 

  4. Boyd S, Ghaoui L E, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  5. Chen B, Li H, Lin C, Zhou Q (2009) Passivity analysis for uncertain neural networks with discrete and distributed time varying delays. Phys Lett A 373(14):1242–1248

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen H, Liang J, Wang Z (2016) Pinning controllability of autonomous Boolean control networks. Sci China Inf Sci 59(7):Art. No. 070107. doi:10.1007/s11432-016-5579-8

    Article  Google Scholar 

  7. Gao H, Chen T, Chai T (2007) Passivity and passification for networked control systems. SIAM J Control Optim 46(4):1299–1322

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu S, Wang J (2002) Global stability of a class of discrete-time recurrent neural networks. IEEE Trans Circ Syst I 49(8):1104–1117

    Article  MathSciNet  MATH  Google Scholar 

  9. Li C, Liao X (2005) Passivity analysis of neural networks with time delay. IEEE Trans Circuits Syst Express Briefs 52(8):471–475

    Article  MathSciNet  Google Scholar 

  10. Li H, Wang C, Shi P, Gao H (2010) New pssivity results for uncertain discrete-time stochastic neural networks with mixed time delays. Neurocomputing 73(4–6):3291–3299

    Article  Google Scholar 

  11. Li Q, Shen B, Liu Y, Alsaadi F E (2016) Event-triggered \(H_{\infty }\) state estimation for discrete-time stochastic genetic regulatory networks with Markovian jumping parameters and time-varying delays. Neurocomputing 174:912–920

    Article  Google Scholar 

  12. Li R, Cao J, Tu Z (2016) Passivity analysis of memristive neural networks with probabilistic time-varying delays. Neurocomputing 191:249–262

    Article  Google Scholar 

  13. Li W, Wei G, Han F, Liu Y (2016) Weighted average consensus-based unscented Kalman filtering. IEEE Trans Cybern 46(2):558–567

    Article  Google Scholar 

  14. Liu D, Liu Y, Alsaadi F E (2016) A new framework for output feedback controller design for a class of discrete-time stochastic nonlinear system with quantization and missing measurement. Int J Gen Syst 45(5):517–531

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu S, Wei G, Song Y, Liu Y (2016) Extended Kalman filtering for stochastic nonlinear systems with randomly occurring cyber attacks. Neurocomputing 207:708–716

    Article  Google Scholar 

  16. Liu Y, Liu W, Obaid M A, Abbas I A (2016) Exponential stability of Markovian jumping Cohen-Grossberg neural networks with mixed mode-dependent time-delays. Neurocomputing 177:409–415

    Article  Google Scholar 

  17. Liu Y, Wang Z, Liang J, Liu X (2008) Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans Syst Man Cybern B 38(5):1314–1325

    Article  Google Scholar 

  18. Liu Y, Wang Z, Liu X (2006) Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw 19(5):667–675

    Article  MATH  Google Scholar 

  19. Liu Y, Wang Z, Serrano A, Liu X (2006) Discrete-time recurrent neural networks with time-varying delays: exponential stability analysis. Phys Lett A 362(5-6):480–488

    Article  Google Scholar 

  20. Lou X, Cui B (2007) Passivity analysis of integro-differential neural networks with time-varying delays. Neurocomputing 70(4–6):1071–1078

    Article  Google Scholar 

  21. Sheng L, Wang Z, Tian E, Alsaadi F E (2016) Delay-distribution-dependent \(H_{\infty }\) state estimation for delayed neural networks with (x,v)-dependent noises and fading channels. Neural Netw 84:102–112

    Article  Google Scholar 

  22. Shu H, Zhang S, Shen B, Liu Y (2016) Unknown input and state estimation for linear discrete-time systems with missing measurements and correlated noises. Int J Gen Syst 45(5):648– 661

    Article  MathSciNet  MATH  Google Scholar 

  23. Song Q, Liang J, Wang Z (2009) Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 72(7–9):1782–1788

    Article  Google Scholar 

  24. Song Q, Wang Z (2007) A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays. Phys Lett A 368:134–145

    Article  Google Scholar 

  25. Song Q, Zhang J (2008) Global exponential stability of impulsive Cohen-Grossberg neural network with time-varying delays. Nonlinear Anal: Real World Appl 9:500–510

    Article  MathSciNet  MATH  Google Scholar 

  26. Thuan M V, Trinh H, Hien L V (2016) New inequality-based approach to passivity analysis of neural networks with interval time-varying delay. Neurocomputing 194:301–307

    Article  Google Scholar 

  27. Wang L, Xu Z (2006) Sufficient and necessary conditions for global exponential stability of discrete-time recurrent neural networks. IEEE Trans Circuits Syst I 53(6):1373–1380

    Article  MathSciNet  MATH  Google Scholar 

  28. Wen C, Cai Y, Liu Y, Wen C (2016) A reduced-order approach to filtering for systems with linear equality constraints. Neurocomputing 193:219–226

    Article  Google Scholar 

  29. Wu L, Zheng W (2009) Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9):2120–2127

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu Z, Shi P, Su H, Chu J (2011) Delay-dependent stability analysis for switched neural networks with time-varying delay. IEEE Trans Syst Man Cybern B Cybern 41(6):1522– 1530

    Article  Google Scholar 

  31. Yu W (2003) Passivity analysis for dynamic multilayer neuro identifier. IEEE Trans Circuits Syst I 50 (1):173–178

    Article  MathSciNet  MATH  Google Scholar 

  32. Yue D, Zhang Y, Tian E, Peng C (2008) Delay-distribution-dependent exponential stability criteria for discrete-time recurrent neural networks with stochastic delay. IEEE Trans Neural Netw 19(7):1299–1306

    Article  Google Scholar 

  33. Zeng H, He Y, Wu M, Xiao H (2014) Improved conditions for passivity of neural networks with a time-varying delay. IEEE Tran Cybern 44(6):785–792

    Article  Google Scholar 

  34. Zeng H, He Y, Wu M, Xiao S (2011) Passivity analysis for neural networks with a time-varying delay. Neurocomputing 74(5):730–734

    Article  Google Scholar 

  35. Zeng J, Park H, Shen H (2015) Robust passivity analysis of neural networks with discrete and distributed delays. Neurocomputing 149:1092–1097

    Article  Google Scholar 

  36. Zeng N, Wang Z, Zhang H (2016) Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter. Sci China Inf Sci 59(11):Art. No. 112204. doi:10.1007/s11432-016-0280-9

    Article  Google Scholar 

  37. Zhang J, Ma L, Liu Y (2016) Passivity analysis for discrete-time neural networks with mixed time-delays and randomly occurring quantization effects. Neurocomputing 216:657–665

    Article  Google Scholar 

  38. Zhang Y, Xu S, Chu Y, Lu J (2010) Robust global synchronization of complex networks with neutral-type delayed nodes. Appl Math Comput 216(3):768–778

    MathSciNet  MATH  Google Scholar 

  39. Zhang W, Wang Z, Liu Y, Ding D, Alsaadi F E (2017) Event-based state estimation for a class of complex networks with time-varying delays: a comparison principle approach. Phys Lett A 381(1): 10–18

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61422301 and 61374127, the Northeast Petroleum University Youth Top-Notch Talent Project RC201601, the Northeast Petroleum University Innovation Foundation for Postgraduate YJSCX2016-026NEPU and the Alexander von Humboldt Foundation of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix I

Proof of Theorem 1

Proof

By Lemma 3, we know that inequality (4) holds if and only if the following is true:

$$ {\Omega}+(\tau-\bar{\tau})RZ_{1}^{-1}R^{T}+(\tau-\bar{\tau})SZ_{1}^{-1}S^{T}+\bar{\tau}WZ_{1}^{-1}W^{T}<0 $$
(8)

where

$$\begin{array}{@{}rcl@{}} R\!&=&\!\left[\!\begin{array}{c} {R_{1}^{T}}\quad\! {R_{2}^{T}}\quad\! {R_{3}^{T}}\quad\! {R_{4}^{T}}\quad\! {R_{5}^{T}}\quad\! {R_{6}^{T}}\quad\! {R_{7}^{T}}\quad\! {R_{8}^{T}}\quad\! {R_{9}^{T}} \quad\! 0\quad\! 0 \end{array}\!\right]^{T},\\ S\!&=&\!\left[\!\begin{array}{c} {S_{1}^{T}}\quad\! {S_{2}^{T}}\quad\! {S_{3}^{T}}\quad\! {S_{4}^{T}}\quad\! {S_{5}^{T}}\quad\! {S_{6}^{T}}\quad\! {S_{7}^{T}}\quad\! {S_{8}^{T}}\quad\! {S_{9}^{T}}\quad\! 0\quad 0\! \end{array}\!\right]^{T},\\ W\!&=&\!\left[\!\begin{array}{c} {W_{1}^{T}}\quad\! {W_{2}^{T}}\quad\! {W_{3}^{T}}\quad\! {W_{4}^{T}}\quad\! {W_{5}^{T}}\quad\! {W_{6}^{T}} \quad\! {W_{7}^{T}}\quad\! {W_{8}^{T}}\quad\! {W_{9}^{T}}\quad\! 0\! \quad 0 \end{array}\!\right]^{T}, \end{array} $$
$${\Omega}\,=\,\left[\! \begin{array}{ccccccccccc} {\Pi}_{11} & {\Pi}_{12} & {\Pi}_{13} & {\Pi}_{14} & {\Pi}_{15} & {\Pi}_{16} & {\Pi}_{17} & {\Pi}_{18} & {\Pi}_{19}& S_{1}-W_{1} & -R_{1} \\ \ast & {\Pi}_{22} & {\Pi}_{23} & {\Pi}_{24} & {\Pi}_{25} & {\Pi}_{26} & 0 & 0 & {\Pi}_{29}&S_{2}-W_{2} & -R_{2} \\ \ast & \ast & {\Pi}_{33} & {\Pi}_{34} & {\Pi}_{35} & {\Pi}_{36} & 0 & 0 & {\Pi}_{39}&S_{3}-W_{3} & -R_{3} \\ \ast & \ast & \ast & {\Pi}_{44} & {\Pi}_{45} & {\Pi}_{46} & 0 & 0& {\Pi}_{49}&S_{4}-W_{4} & -R_{4} \\ \ast & \ast & \ast & \ast & {\Pi}_{55} & {\Pi}_{56} & 0 & 0& {\Pi}_{59} &S_{5}-W_{5} & -R_{5} \\ \ast & \ast & \ast & \ast & \ast & {\Pi}_{66} & 0 & 0& {\Pi}_{69}& S_{6}-W_{6} & -R_{6}\\ \ast & \ast & \ast & \ast & \ast & \ast & {\Pi}_{77} & 0& {\Pi}_{79}& S_{7}-W_{7} & -R_{7}\\ \ast & \ast & \ast & \ast & \ast & \ast & \ast & {\Pi}_{88}& {\Pi}_{89}&S_{8}-W_{8} & -R_{8}\\ \ast & \ast & \ast & \ast & \ast& \ast & \ast & \ast & {\Pi}_{99}&S_{9}-W_{9} & -R_{9} \\ \ast & \ast & \ast & \ast & \ast& \ast & \ast & \ast & \ast & -Q_{1} & 0 \\ \ast & \ast & \ast & \ast & \ast& \ast & \ast & \ast&\ast & \ast & -Q_{3} \\ \end{array} \!\right]\!. $$

Defining η(k) = x(k + 1) − x(k),we consider the Lyapunov-Krasovskii functional candidate for model (1) as follows

$$V(k,x(k))=\sum\limits^{7}_{i=1}V_{i}(k,x(k)), $$

where

$$\begin{array}{@{}rcl@{}} V_{1}(k,x(k))&=&x^{T}(k)Px(k),\\ V_{2}(k,x(k))&=&\sum\limits^{k-1}_{j=k-\bar{\tau}}x^{T}(j)Q_{1}x(j),\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} V_{3}(k,x(k))&=&\sum\limits^{k-1}_{j=k-\tau(k)}x^{T}(j)Q_{2}x(j)\\ &&+\sum\limits^{k-\bar{\tau}}_{l=k-\tau+1}\sum\limits^{k-1}_{j=l}x^{T}(j)Q_{2}x(j),\\ V_{4}(k,x(k))&=&\sum\limits^{k-1}_{j=k-\tau}x^{T}(j)Q_{3}x(j),\\ V_{5}(k,x(k))&=&\sum\limits^{k-1}_{l=k-\tau}\sum\limits^{k-1}_{j=l}\eta^{T}(j)Z_{1}\eta(j),\\ V_{6}(k,x(k))&=&\sum\limits^{\infty}_{d=1}\mu_{d}\sum\limits^{k-1}_{j=k-d}f^{T}(x(j))Z_{2}f(x(j)),\\ V_{7}(k,x(k))&=&\sum\limits^{q}_{m=1}\sum\limits^{k-1}_{i=k-\tau_{m}(k)}h^{T}(x(i)){\Theta}_{m}h(x(i))\\ &&+\sum\limits^{q}_{m=1}\sum\limits^{-d_{min}}_{j=-d_{max}+1} \sum\limits^{k-1}_{i=k+j}h^{T}(x(i)){\Theta}_{m}h(x(i)). \end{array} $$

Calculating the difference of V (k)along the trajectories of model (1) and taking the mathematical expectation, we obtain

$$\mathbb{E}\left\{\Delta V(k,x(k))\right\}=\sum\limits^{7}_{i=1}\mathbb{E}\left\{\Delta V_{i}(k,x(k))\right\}, $$

where

$$\begin{array}{@{}rcl@{}} \mathbb{E}\left\{\Delta V_{1}(k,x(k))\right\}&\,=\,&\mathbb{E}\left\{\vphantom{PD \sum\limits^{\infty}_{d=1}}x^{T}(k)(A^{T}PA-P)x(k)\right.\\ &&+2x^{T}(k)A^{T}PBy(k)\\ &&+2\bar{\alpha} x^{T}(k)A^{T}PCy(k-\tau(k))\\ &&+2\bar{\beta}x^{T}(k)A^{T}PD \sum\limits^{\infty}_{d=1}\mu_{d}f(x(k-d))\\ &&+2\bar{\gamma} x^{T}(k)A^{T}PE\sum\limits^{q}_{m=1}h(x(k\,-\,\tau_{m}(k)))\\ &&\!+2x^{T}(k)A^{T}Pu(k)\,+\,y^{T}(k)B^{T}PBy(k)\\ &&+2\bar{\alpha} y^{T}(k)B^{T}PCy(k-\tau(k))\\ &&+2\bar{\beta}y^{T}(k)B^{T}PD\sum\limits^{\infty}_{d=1} \mu_{d}f(x(k\,-\,d))\\ &&+2\bar{\gamma} y^{T}(k)B^{T}PE\!\sum\limits^{q}_{m=1}\!h(x(k\,-\,\tau_{m}(k)))\\ &&+2y^{T}(k)B^{T}Pu(k)\\ &&+{\bar{\alpha}} y^{T}(k-\tau(k))C^{T}PCy(k-\tau(k))\\ &&+2\bar{\alpha}\bar{\beta}y^{T}(k-\tau(k))C^{T}PD \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{\kern6.5pc}\times\sum\limits^{\infty}_{d=1} \mu_{d}f(x(k-d))\\ &&{\kern6.5pc}+2\bar{\alpha}\bar{\gamma} y^{T}(k-\tau(k))C^{T}PE\\ &&{\kern6.5pc}\times\sum\limits^{q}_{m=1}h(x(k-\tau_{m}(k)))\\ &&{\kern6.5pc}+2\bar{\alpha} y^{T}(k-\tau(k))C^{T}Pu(k)\\ &&{\kern6.5pc}+{\bar{\beta}}\sum\limits^{\infty}_{d=1} \mu_{d}f^{T}(x(k-d))D^{T}PD\\ &&{\kern6.5pc}\times\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k-d))\\ &&{\kern6.5pc}+2\bar{\beta}\bar{\gamma}\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k-d))D^{T}PE\\ &&{\kern6.5pc}\times\sum\limits^{q}_{m=1} h(x(k-\tau_{m}(k)))\\ &&{\kern6.5pc}+2\bar{\beta}\sum\limits^{\infty}_{d=1} \mu_{d}f^{T}(x(k-d))D^{T}Pu(k)\\ &&{\kern6.5pc}+{\bar{\gamma}}\sum\limits^{q}_{m=1} h^{T}(x(k-\tau_{m}(k)))E^{T}PE\\ &&{\kern6.5pc}\times\sum\limits^{q}_{m=1} h(x(k-\tau_{m}(k)))\\ &&{\kern6.5pc}+2\bar{\gamma}\sum\limits^{q}_{m=1} h^{T}(x(k-\tau_{m}(k)))E^{T}Pu(k)\\ &&{\kern6.5pc} +u^{T}(k)Pu(k)\\ &&{\kern6.5pc}\left.+\sigma^{T}(x(k),x(k-\tau(k)),k)P\sigma(x(k),\right.\!\\ &&{\kern6.5pc}\left.x(k-\tau(k)),k)\vphantom{PD \sum\limits^{\infty}_{d=1}}\right\}, \end{array} $$
(9)
$$\begin{array}{@{}rcl@{}} &&\mathbb{E}\left\{\Delta V_{2}(k,x(k))\right\}\\&&= \mathbb{E}\left\{x^{T}(k)Q_{1}x(k)-x^{T}(k-\bar{\tau})Q_{1}x(k-\bar{\tau})\right\}, \end{array} $$
(10)
$$\begin{array}{@{}rcl@{}} \mathbb{E}\left\{\Delta V_{3}(k,x(k))\right\}&=&\mathbb{E}\left\{\sum\limits^{k}_{j=k+1-\tau(k+1)}x^{T}(j)Q_{2}x(j)\right.\\ &&\qquad\left.+\sum\limits^{k+1-\bar{\tau}}_{l=k-\tau+2}\sum\limits^{k}_{j=l}x^{T}(j)Q_{2}x(j)\right.\\ &&\qquad-\sum\limits^{k-1}_{j=k-\tau(k)}x^{T}(j)Q_{2}x(j)\\ &&\qquad-\left.\sum\limits^{k-\bar{\tau}}_{l=k-\tau+1}\sum\limits^{k-1}_{j=l}x^{T}(j)Q_{2}x(j)\right\} \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\qquad\qquad{}=\mathbb{E}\left\{\sum\limits^{k-\bar{\tau}}_{j=k+1-\tau(k+1)}x^{T}(j)Q_{2}x(j)\right.\\ &&\qquad\qquad+\sum\limits^{k-1}_{j=k+1-\bar{\tau}}x^{T}(j)Q_{2}x(j)\\ &&\qquad\qquad+ x^{T}(k)Q_{2}x(k)\\ &&\qquad\qquad-\sum\limits^{k-1}_{j=k+1-\tau(k)}x^{T}(j)Q_{2}x(j)\\ &&\qquad\qquad- x^{T}(k-\tau(k))Q_{2}x(k-\tau(k)) \\ &&\qquad\qquad+(\tau-\bar{\tau})x^{T}(k)Q_{2}x(k)\\ &&\qquad\qquad-\left.\sum\limits^{k-\bar{\tau}}_{l=k+1-\tau}x^{T}(l)Q_{2}x(l)\right\}\\ &&\qquad\qquad{}\leq\mathbb{E}\left\{(1+\tau-\bar{\tau})x^{T}(k)Q_{2}x(k)\right.\\ &&\qquad\qquad\left.-x^{T}(k-\tau(k))Q_{2}x(k-\tau(k))\right\}, \end{array} $$
(11)
$$\begin{array}{@{}rcl@{}} \mathbb{E}\left\{\Delta V_{4}(k,x(k))\right\}&=&\mathbb{E}\left\{x^{T}(k)Q_{3}x(k)\right.\\ &&-\left.x^{T}(k-\tau)Q_{3}x(k-\tau)\right\}, \end{array} $$
(12)
$$\begin{array}{@{}rcl@{}} \mathbb{E}\left\{\Delta V_{5}(k,x(k))\right\}&\,=\,&\mathbb{E}\left\{\!\tau\eta^{T}(k)Z_{1}\eta(k)\,-\,\sum\limits^{k-1}_{j=k-\tau}\eta^{T}(j)Z_{1}\eta(j)\!\right\}\\ &=&\mathbb{E}\left\{\vphantom{\left.\!-\sum\limits^{k-1}_{j=k-\bar{\tau}}\eta^{T}(j)Z_{1}\eta(j)\right\}}\tau x^{T}(k)((A-I)^{T}Z_{1}(A-I))x(k)\right.\\ &&+2\tau x^{T}(k)(A-I)^{T}Z_{1}By(k) \\ &&+2\tau\bar{\alpha} x^{T}(k)(A-I)^{T}Z_{1}Cy(k-\tau(k))\\&&+2\tau\bar{\beta} x^{T}(k)(A-I)^{T}Z_{1}D\\ &&\times\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k-d))\\ &&+2\tau\bar{\gamma}x^{T}(k)(A-I)^{T}Z_{1}E\\ &&\times\sum\limits^{q}_{m=1}h(x(k-\tau_{m}(k)))\\ &&+2\tau x^{T}(k)(A-I)^{T}Z_{1}u(k)\\ &&+\tau y^{T}(k)B^{T}Z_{1}By(k)\\ &&+2\tau\bar{\alpha} y^{T}(k)B^{T}Z_{1}Cy(k-\tau(k))\\ &&+2\tau\bar{\beta}y^{T}(k)B^{T}Z_{1}D\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k\,-\,d))\\ &&\,+\,2\tau\bar{\gamma} y^{T}(k)B^{T}Z_{1}E\sum\limits^{q}_{m=1}h(x(k\,-\,\tau_{m}(k)))\\ &&+2\tau y^{T}(k)B^{T}Z_{1}u(k)\\ &&+\tau\bar{\alpha} y^{T}(k-\tau(k))C^{T}Z_{1}Cy(k\,-\,\tau(k))\\ &&+2\tau\bar{\alpha}\bar{\beta}y^{T}(k-\tau(k))C^{T}Z_{1}D\\ &&\times\sum\limits^{\infty}_{d=1} \mu_{d}f(x(k-d)) \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{\kern6.5pc}+2\tau\bar{\alpha}\bar{\gamma} y^{T}(k-\tau(k))C^{T}Z_{1}E\\ &&{\kern6.5pc}\times\sum\limits^{q}_{m=1}h(x(k-\tau_{m}(k)))\\ &&{\kern6.5pc}+2\tau\bar{\alpha}y^{T}(k-\tau(k))C^{T}Z_{1}u(k)\\ &&{\kern6.5pc}+\tau{\bar{\beta}}\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k-d))D^{T}Z_{1}D\\ &&{\kern6.5pc}\times\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k-d))\\ &&{\kern6.5pc}+2\tau\bar{\beta}\bar{\gamma}\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k-d))D^{T}Z_{1}E\\ &&{\kern6.5pc}\times\sum\limits^{q}_{m=1} h(x(k-\tau_{m}(k)))\\ &&{\kern6.5pc}+2\tau\bar{\beta} \sum\limits^{\infty}_{d=1} \mu_{d}f^{T}(x(k\,-\,d))D^{T}Z_{1}u(k)\\ &&{\kern6.5pc} \!+\tau{\bar{\gamma}}\sum\limits^{q}_{m=1} h^{T}(x(k-\tau_{m}(k)))E^{T}Z_{1}E\\ &&{\kern6.5pc}\times\sum\limits^{q}_{m=1} h(x(k-\tau_{m}(k)))\\ &&{\kern6.5pc}\!+2\tau\bar{\gamma}\sum\limits^{q}_{m=1}\! h^{T}(x(k\,-\,\tau_{m}(k)))E^{T}Z_{1}u(k)\\ &&{\kern6.5pc}+\tau u^{T}(k)Z_{1}u(k)\\ &&{\kern6.5pc}\!+\tau\sigma^{T}(x(k),x(k\,-\,\tau(k)),k)Z_{1}\sigma(x(k),\!\\ &&{\kern6.5pc}x(k-\tau(k)),k)\\ &&{\kern6.5pc}\!-\sum\limits^{k-1-\tau(k)}_{j=k-\tau}\eta^{T}(j)Z_{1}\eta(j)\\ &&{\kern6.5pc}\!-\sum\limits^{k-1-\bar{\tau}}_{j=k-\tau(k)}\eta^{T}(j)Z_{1}\eta(j)\\ &&{\kern6.5pc}\left.\!-\sum\limits^{k-1}_{j=k-\bar{\tau}}\eta^{T}(j)Z_{1}\eta(j)\right\}, \end{array} $$
(13)
$$\begin{array}{@{}rcl@{}} \mathbb{E}\left\{\Delta V_{6}(k,x(k))\right\}&\,=\,&\mathbb{E}\left\{\sum\limits^{\infty}_{d=1}\mu_{d}\sum\limits^{k}_{j=k+1-d}f^{T}(x(j))Z_{2}f(x(j))\right.\\ &&\!\left.-\sum\limits^{\infty}_{d=1}\mu_{d}\sum\limits^{k-1}_{j=k-d}f^{T}(x(j))Z_{2}f(x(j))\right\}\\ &\,=\,&\mathbb{E}\left\{\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k))Z_{2}f(x(k))\right.\\ &&\!\left.-\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k-d))Z_{2}f(x(k-d))\right\}, \end{array} $$
(14)
$$\begin{array}{@{}rcl@{}} \mathbb{E}\left\{\Delta V_{7}(k,x(k))\right\}\!&\leq&\!\mathbb{E}\left\{\sum\limits^{q}_{m=1}[h^{T}(x(k)){\Theta}_{m}h(x(k))\right.\\ &&\!-h^{T}(x(k-\tau_{m}(k))){\Theta}_{m}h(x(k-\tau_{m}(k)))] \\ &&\!\left.+\sum\limits^{q}_{m=1}(d_{\max}-d_{\min})h^{T}(x(k)){\Theta}_{m}h(x(k))\right\}.\\ \end{array} $$
(15)

by using Lemma 2, one has

$$\begin{array}{@{}rcl@{}} \mathbb{E}\left\{\Delta V_{6}(k,x(k))\right\}&\!\leq\!&\mathbb{E}\left\{\vphantom{\left(\sum\limits^{\infty}_{d=1}\right)}\bar{\mu}f^{T}(x(k))Z_{2}f(x(k))\right.\\ &&{}\left.-\frac{1}{\bar{\mu}}\left(\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k\,-\,d))\right)Z_{2}\left(\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k\,-\,d))\right)\right\}\\ \end{array} $$
(16)

and then it follows from (9)–(16) that

$$\begin{array}{@{}rcl@{}} \mathbb{E}\{\Delta V(k,x(k))\}&\!\leq\!&\mathbb{E}\left\{\vphantom{\sum\limits^{k-1}_{j=k-\bar{\tau}}}x^{T}(k)[A^{T}PA\,-\,P\,+\,Q_{1}\right.\\ &&+(1+\tau-\bar{\tau})Q_{2}+Q_{3}\\ &&+\tau(A-I)^{T}Z_{1}(A-I)]x(k)\\ &&+2x^{T}(k)[\tau(A\,-\,I)^{T}Z_{1}B\,+\,A^{T}PB]y(k)\\ &&+2x^{T}(k)[\tau\bar{\alpha} (A-I)^{T}Z_{1}C\\ &&+\bar{\alpha} A^{T}PC]y(k-\tau(k))\\ &&+2x^{T}(k)[\bar{\beta}A^{T}PD\,+\,\tau\bar{\beta}(A-I)^{T}Z_{1}D]\\ &&\times\sum\limits^{\infty}_{d=1} \mu_{d}f(x(k-d))\\ &&+2x^{T}(k)[\tau\bar{\gamma} (A-I)^{T}Z_{1}\bar{E}\\ &&+\bar{\gamma} A^{T}P\bar{E}]\hat{h}(x(k-\tilde{\tau}))\\ &&+2x^{T}(k)[\tau(A-I)^{T}Z_{1}+A^{T}P]u(k)\\ &&+y^{T}(k)[\tau B^{T}Z_{1}B+B^{T}PB]y(k)\\ &&+2y^{T}(k)[\tau\bar{\alpha} B^{T}Z_{1}C\,+\,\bar{\alpha} B^{T}PC]y(k\,-\,\tau(k))\\ &&+2y^{T}(k)[\tau\bar{\beta} B^{T}Z_{1}D+\bar{\beta} B^{T}PD]\\ &&\times\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k-d))\\ &&\!+2y^{T}(k)[\tau\bar{\gamma} B^{T}Z_{1}\bar{E}\,+\,\bar{\gamma} B^{T}P\bar{E}]\hat{h}(x(k\,-\,\tilde{\tau}))\\ &&+2y^{T}(k)[\tau B^{T}Z_{1}+B^{T}P]u(k)\\ &&+y^{T}(k-\tau(k))[\tau{\bar{\alpha}} C^{T}Z_{1}C\\ &&+{\bar{\alpha}} C^{T}PC]y(k-\tau(k))\\ &&+2y^{T}(k-\tau(k))[\tau\bar{\alpha}\bar{\beta} C^{T}Z_{1}D\\ &&+\bar{\alpha}\bar{\beta} C^{T}PD]\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k-d))\\ &&+2y^{T}(k-\tau(k))[\tau\bar{\alpha}\bar{\gamma} C^{T}Z_{1}\bar{E}\\ &&+\bar{\alpha}\bar{\gamma} C^{T}P\bar{E}]\hat{h}(x(k-\tilde{\tau}))\\ &&\!+2y^{T}(k\,-\,\tau(k))[\tau\bar{\alpha} C^{T}Z_{1}\,+\,\bar{\alpha} C^{T}P]u(k) \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{\kern5.8pc}+\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k-d))[{\bar{\beta}} D^{T}PD \\ &&{\kern5.8pc}+\tau{\bar{\beta}} D^{T}Z_{1}D\,-\,\frac{1}{\bar{\mu}}Z_{2}]\!\sum\limits^{\infty}_{d=1}\mu_{d}f(x(k\,-\,d))\\ &&{\kern5.8pc}+2\sum\limits^{\infty}_{d=1}\mu_{d}f^{T}(x(k-d))[\bar{\beta}\bar{\gamma} D^{T}P\bar{E}\\ &&{\kern5.8pc}+\tau\bar{\beta}\bar{\gamma} D^{T}Z_{1}\bar{E}]\hat{h}(x(k-\tilde{\tau}))\\ &&{\kern5.8pc}+2\sum\limits^{\infty}_{d=1} \mu_{d}f^{T}(x(k-d))[\bar{\beta} D^{T}P\\ &&{\kern5.8pc}+\tau\bar{\beta} D^{T}Z_{1}]u(k)\\ && {\kern5.8pc}+\hat{h}^{T}(x(k\,-\,\tilde{\tau}))[{\bar{\gamma}}^{2} \bar{{E}}^{T}P\bar{{E}}\,+\,\tau{\bar{\gamma}}^{2} \bar{{E}}^{T}Z_{1}\bar{{E}}\\ &&{\kern5.8pc}+ \tilde{E}^{T}\tilde{P}\tilde{{E}}\,+\,\tau \tilde{E}^{T}\tilde{Z_{1}}\tilde{{E}}\,-\,\hat{\Theta}]\hat{h}(x(k-\tilde{\tau}))\\ &&{\kern5.8pc}+2\hat{h}^{T}(x(k-\tilde{\tau}))[\bar{\gamma} \bar{E}^{T}P+\tau\bar{\gamma}\\ &&{\kern6.5pc}\times \bar{E}^{T}Z_{1}]u(k)+u^{T}(k)[P+\tau Z_{1}]u(k)\\ &&{\kern5.8pc}\!+h^{T}(x(k))[\bar{\Theta}\,+\,(d_{\max}\,-\,d_{\min})\bar{\Theta}]h(x(k))\\ &&{\kern5.8pc}+f^{T}(x(k))[\bar{\mu}Z_{2}]f(x(k))\\ &&{\kern5.8pc}+x^{T}(k-\tau(k))(-Q_{2})x(k-\tau(k))\\ &&{\kern5.8pc}+x^{T}(k-\bar{\tau})(-Q_{1})x(k-\bar{\tau})\\ &&{\kern5.8pc}\!+x^{T}(k-\tau)(-Q_{3})x(k-\tau)\,+\,\sigma^{T}(x(k),\\ &&{\kern5.8pc}x(k-\tau(k)),k)[\tau Z_{1}+P]\sigma(x(k),\\ &&{\kern5.8pc}x(k-\tau(k)),k)\\ &&{\kern5.8pc}-\sum\limits^{k-1-\tau(k)}_{j=k-\tau}\eta^{T}(j)Z_{1}\eta(j)\\ &&{\kern5.8pc}-\sum\limits^{k-1-\bar{\tau}}_{j=k-\tau(k)}\eta^{T}(j) Z_{1}\eta(j)\\ &&{\kern5.8pc}\left.-\sum\limits^{k-1}_{j=k-\bar{\tau}}\eta^{T}(j)Z_{1}\eta(j)\right\}, \end{array} $$

where

$$\begin{array}{@{}rcl@{}} &&{}\hat{h}(x(k-\tilde{\tau}))=[{h}^{T}(x(k-\tau_{1}(k)))\\ &&{\kern5.2pc}{h}^{T}(x(k-\tau_{2}(k))){\cdots} {h}^{T}(x(k-\tau_{q}(k)))]^{T}. \end{array} $$

From Assumption 1 and condition (3), one has

$$\begin{array}{@{}rcl@{}} &&{} \sigma^{T}(x(k),x(k\,-\,\tau(k)),k)(\tau Z_{1}\,+\,P)\sigma(x(k),x(k\,-\,\tau(k)),k)\\ &&\!\leq\!\lambda_{\max}(\tau Z_{1}\,+\,P)\sigma^{T}(x(k),x(k\,-\,\tau(k)),k)\sigma(x(k),x(k\,-\,\tau(k)),k)\\ &&\!\leq\!\lambda\left[\rho_{1}x^{T}(k)x(k)+\rho_{2}x^{T}(k-\tau(k))x(k-\tau(k))\right]. \end{array} $$
(17)

According to Assumption 3, for i = 1, 2,…,n,it is easy to verify that

$$\begin{array}{@{}rcl@{}} &&{} (y_{i}(k)-G^{-}_{i}x_{i}(k))(y_{i}(k)-G^{+}_{i}x_{i}(k))\leq0,\\ &&{}(h_{i}(x(k))-H^{-}_{i}x_{i}(k))(h_{i}(x(k))-H^{+}_{i}x_{i}(k))\leq0,\\ &&{}(f_{i}(x(k))-F^{-}_{i}x_{i}(k))(f_{i}(x(k))-F^{+}_{i}x_{i}(k))\leq0,\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{}(y_{i}(k-\tau(k))-G^{-}_{i}x_{i}(k-\tau(k)))(y_{i}(k-\tau(k))\\ &&{}-G^{+}_{i}x_{i}(k-\tau(k)))\leq0, \end{array} $$

and, furthermore, we have

$$\begin{array}{@{}rcl@{}} &&{} \sum\limits^{n}_{i=1}m_{i} \left[ \begin{array}{cc} x(k) \\ y(k)\\ \end{array} \right]^{T} \left[ \begin{array}{cc} G^{-}_{i}G^{+}_{i}e_{i}{e^{T}_{i}} & -\frac{ G^{-}_{i}+G^{+}_{i}}{2}e_{i}{e^{T}_{i}} \\ -\frac{ G^{-}_{i}+G^{+}_{i}}{2}e_{i}{e^{T}_{i}}& e_{i}{e^{T}_{i}} \\ \end{array} \right]\\&& \times\left[ \begin{array}{cc} x(k) \\ y(k)\\ \end{array} \right] \leq0,\\ &&{}\sum\limits^{n}_{i=1}v_{i} \left[ \begin{array}{cc} x(k) \\ h(x(k))\\ \end{array} \right]^{T} \left[ \begin{array}{cc} H^{-}_{i}H^{+}_{i}e_{i}{e^{T}_{i}} & -\frac{ H^{-}_{i}+H^{+}_{i}}{2}e_{i}{e^{T}_{i}} \\ -\frac{ H^{-}_{i}+H^{+}_{i}}{2}e_{i}{e^{T}_{i}}& e_{i}{e^{T}_{i}} \\ \end{array} \right]\\&& \times \left[ \begin{array}{cc} x(k) \\ h(x(k))\\ \end{array} \right] \leq0,\\ &&{}\sum\limits^{n}_{i=1}u_{i} \left[ \begin{array}{cc} x(k) \\ f(x(k))\\ \end{array} \right]^{T} \left[ \begin{array}{cc} F^{-}_{i}F^{+}_{i}e_{i}{e^{T}_{i}} & -\frac{ F^{-}_{i}+F^{+}_{i}}{2}e_{i}{e^{T}_{i}} \\ -\frac{ F^{-}_{i}+F^{+}_{i}}{2}e_{i}{e^{T}_{i}}& e_{i}{e^{T}_{i}} \\ \end{array} \right]\\&& \times \left[ \begin{array}{cc} x(k) \\ f(x(k))\\ \end{array} \right] \leq0,\\ &&{}\sum\limits^{n}_{i=1}n_{i} \left[ \begin{array}{cc} x(k-\tau(k)) \\ y(k-\tau(k))\\ \end{array} \right]^{T} \left[ \begin{array}{cc} G^{-}_{i}G^{+}_{i}e_{i}{e^{T}_{i}} & -\frac{ G^{-}_{i}+G^{+}_{i}}{2}e_{i}{e^{T}_{i}} \\ -\frac{ G^{-}_{i}+G^{+}_{i}}{2}e_{i}{e^{T}_{i}}& e_{i}{e^{T}_{i}} \\ \end{array} \right]\\&& \times \left[ \begin{array}{cc} x(k-\tau(k)) \\ y(k-\tau(k)) \end{array} \right] \leq0, \end{array} $$
(18)

where eidenotes the unit column vector with 1 on its i th row and zeros elsewhere.

Letting

$$\begin{array}{@{}rcl@{}} M=\text{diag}\{m_{1},m_{2},\ldots,m_{n}\},\quad V=\text{diag}\{v_{1},v_{2},\ldots,v_{n}\},\\ U=\text{diag}\{u_{1},u_{2},\ldots,u_{n}\},\quad N=\text{diag}\{n_{1},n_{2},\ldots,n_{n}\}, \end{array} $$

equation (19) can be rewritten as

$$\begin{array}{@{}rcl@{}} &&{}\left[ \begin{array}{cc} x(k) \\ y(k)\\ \end{array} \right]^{T} \left[ \begin{array}{cc} G_{1}M & -G_{2}M \\ -G_{2}M& M \\ \end{array} \right] \left[ \begin{array}{cc} x(k) \\ y(k)\\ \end{array} \right] \leq0, \end{array} $$
(20)
$$\begin{array}{@{}rcl@{}} &&{} \left[ \begin{array}{cc} x(k) \\ h(x(k))\\ \end{array} \right]^{T} \left[ \begin{array}{cc} H_{1}V & -H_{2}V \\ -H_{2}V& V \\ \end{array} \right] \left[ \begin{array}{cc} x(k) \\ h(x(k))\\ \end{array} \right] \leq0, \end{array} $$
(21)
$$\begin{array}{@{}rcl@{}} &&{}\left[ \begin{array}{cc} x(k) \\ f(x(k))\\ \end{array} \right]^{T} \left[ \begin{array}{cc} F_{1}U & -F_{2}U \\ -F_{2}U& U \\ \end{array} \right] \left[ \begin{array}{cc} x(k) \\ f(x(k))\\ \end{array} \right] \leq0, \end{array} $$
(22)
$$\begin{array}{@{}rcl@{}} &&{}\left[ \begin{array}{cc} x(k-\tau(k)) \\ y(k-\tau(k))\\ \end{array} \right]^{T} \left[ \begin{array}{cc} G_{1}N & -G_{2}N \\ -G_{2}N& N \\ \end{array} \right] \left[ \begin{array}{cc} x(k-\tau(k)) \\ y(k-\tau(k))\\ \end{array} \right]\leq0.\\ \end{array} $$
(23)

Denoting \(\mathcal {Q}(k)=\left [x^{T}(k)\quad y^{T}(k)\quad y^{T}(k\,-\,\tau (k)) \right .\)\( \left .\sum \limits ^{\infty }_{d=1}\!\mu _{d}\right . f^{T}(x(k-d)) \ \hat {h}^{T}(x(k-\!\tilde {\tau }))\ u^{T}(k)~ h^{T}(x(k))\)\( f^{T}\!(x(k)) \left .x^{T}\!(k\,-\,\tau (k))\!\quad x^{T}(k-\bar {\tau })\quad x^{T}(k-\tau )\right ]^{T}\), wehave

$$ 2\mathcal{Q}^{T}(k)R\left[x(k-\tau(k))-x(k-\tau)-\sum\limits^{k-\tau(k)-1}_{i=k-\tau}\eta(i)\right]=0, $$
(24)
$$ 2\mathcal{Q}^{T}(k)S\left[x(k-\bar{\tau})-x(k-\tau(k))-\sum\limits^{k-\bar{\tau}-1}_{i=k-\tau(k)}\eta(i)\right]=0, $$
(25)
$$ 2\mathcal{Q}^{T}(k)W\left[x(k)-x(k-\bar{\tau})-\sum\limits^{k-1}_{i=k-\bar{\tau}}\eta(i)\right]=0. $$
(26)

Following from (8) and (24)–(26), one has

$$\begin{array}{@{}rcl@{}} &&{} \mathbb{E}\{\Delta V(k,x(k))-2y^{T}(k)u(k)-\gamma u^{T}(k)u(k)\}\\ &&\!\!\!\!\leq \mathbb{E}\left\{\vphantom{\sum\limits^{k-1}_{i=k-\bar{\tau}}}\mathcal{Q}^{T}(k)\left[{\Omega}+(\tau-\bar{\tau})RZ_{1}^{-1}R^{T}+(\tau-\bar{\tau})SZ_{1}^{-1}S^{T}\right.\right.\\ &&+\!\left.\bar{\tau}WZ_{1}^{-1}W^{T}\right]\mathcal{Q}(k)\\ &&-\!\sum\limits^{k-\tau(k)-1}_{i=k-\tau}(Z_{1}\eta(i)+R^{T}\mathcal{Q}(k))^{T}Z_{1}^{-1}(Z_{1}\eta(i)+R^{T}\mathcal{Q}(k))\\ &&-\!\sum\limits^{k-\bar{\tau}-1}_{i=k-\tau(k)}(Z_{1}\eta(i)+S^{T}\mathcal{Q}(k))^{T}Z_{1}^{-1}(Z_{1}\eta(i)+S^{T}\mathcal{Q}(k))\\ &&-\!\left.\sum\limits^{k-1}_{i=k-\bar{\tau}}(Z_{1}\eta(i)+W^{T}\mathcal{Q}(k))^{T}Z_{1}^{-1}(Z_{1}\eta(i)+W^{T}\mathcal{Q}(k))\right\}\\ &&\!\!\!\!\leq0 \end{array} $$
(27)

which implies

$$\begin{array}{@{}rcl@{}} &&{} 2\sum\limits^{k_{0}}_{j=0}\mathbb{E}\{y^{T}(j)u(j)\}\geq\sum\limits^{k_{0}}_{j=0}\mathbb{E}\{\Delta V(j,x(j))\}\\ &&{\kern7.1pc}-\gamma\sum\limits^{k_{0}}_{j=0}\mathbb{E}\{u^{T}(j)u(j)\}, \,\,\,\,\,\forall k_{0}\in\mathbb{N}. \end{array} $$

According to the definition of V (k,x(k)),we have

$$\begin{array}{@{}rcl@{}} \sum\limits^{k_{0}}_{j=0}\mathbb{\!E}\{\Delta V(j,x(j))\}&\,=\,&\mathbb{E}\{V(k_{0}\,+\,1,x(k_{0}\,+\,1))\,-\,V(0,x(0))\}\\ &\,=\,&\mathbb{E}\left\{V(k_{0}\,+\,1,x(k_{0}\,+\,1))\geq0\right. \end{array} $$

and therefore

$$2\sum\limits^{k_{0}}_{j=0}\mathbb{E}\{y^{T}(j)u(j)\}\geq-\gamma\sum\limits^{k_{0}}_{j=0}\mathbb{E}\{u^{T}(j)u(j)\},\; \forall k_{0}\in\mathbb{N}. $$

The proof isnow complete. □

Appendix II

Proof of Corollary 1

Proof

By using A + ΔA, B + ΔB, C + ΔC, D + ΔD,and E + ΔE to replace A, B, C, D,and E, the inequality (4) can be rewritten as follows:

$$ {\Sigma}_{1}+{\Phi} P^{-1}{\Phi}^{T}+{\tau}{\Psi} Z_{1}^{-1}{\Psi}^{T}+{\Upsilon}_{1}{\Upsilon}_{2}^{-1}{{\Upsilon}_{1}^{T}}<0 $$
(28)

where

$$\begin{array}{@{}rcl@{}} &&{} {\Phi}=\left[ \begin{array}{ccccccccccccccc} {\Xi}_{1}&{\Xi}_{2}&{\Xi}_{3}& {\Xi}_{4}& {\Xi}_{5} & P& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]^{T},\\ &&{}{\Psi}=\left[ \begin{array}{ccccccccccccccc} {\Xi}_{6}&{\Xi}_{7}& {\Xi}_{8}& {\Xi}_{9}& {\Xi}_{10} & Z_{1}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]^{T},\\ &&{}{\Upsilon}_{1}=\left[ \begin{array}{ccccccccccccccc} 0& 0 &{\Xi}_{11} & 0& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\ 0 &0 & 0 & {\Xi}_{12} & 0& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0& 0 & 0 &{\Xi}_{13} & 0& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 &0 &{\Xi}_{14} & 0& 0 & 0 & 0& 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 &0 & 0 & {\Xi}_{15} & 0 & 0 & 0& 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 &0 & 0 &0 & {\Xi}_{16} & 0 & 0 & 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right]^{T}, \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{}{\Xi}_{1}=P(A+{\Delta} A),\quad {\Xi}_{2}=P(B+{\Delta} B),\\ &&{}{\Xi}_{3}=\bar{\alpha}P(C+{\Delta} C),\quad {\Xi}_{4}=\bar{\beta}P(D+{\Delta} D),\\ &&{}{\Xi}_{5}= \bar{\gamma}P(\bar{E}+{\Delta \bar{E}}),\quad {\Xi}_{6}=Z_{1}(A+{\Delta} A-I),\\ &&{}{\Xi}_{7}=Z_{1}(B+{\Delta} B),\quad {\Xi}_{8}=\bar{\alpha}Z_{1}(C+{\Delta} C),\\ &&{}{\Xi}_{9}=\bar{\beta} Z_{1}(D+{\Delta} D),\quad {\Xi}_{10}= \bar{\gamma}Z_{1}(\bar{E}+{\Delta \bar{E}}), \\ &&{}{\Xi}_{11}= \tilde{\alpha}P(C+{\Delta} C),\quad {\Xi}_{12}= \tilde{\beta}P(D+{\Delta} D)\\ &&{}{\Xi}_{13}= \tilde{P}(\tilde{E}+{\Delta \tilde{E}}),\quad {\Xi}_{14}= \sqrt{\tau}\tilde{\alpha}Z_{1}(C+{\Delta} C),\\ &&{}{\Xi}_{15}= \sqrt{\tau}\tilde{\beta}Z_{1}(D+{\Delta} D),\quad{\Xi}_{16}= \sqrt{\tau}\tilde{Z_{1}}(\tilde{E}+{\Delta \tilde{E}}),\\ &&{}{\Delta}\tilde{{E}}=g_{m}\otimes {\Delta} {E}, \quad {\Delta \bar{E}}=\underbrace{[{\Delta} E \quad {\Delta} E{\cdots} {\Delta} E]}_{q}. \end{array} $$

Based on Theorem 1, in order to show the passivity of system (5), it suffices to prove that (28) is true. Accordingto

$$[\!{\Delta} A \!\quad\!\!{\Delta} B \!\quad\!\!{\Delta} C \quad\!\! \!{\Delta} D \quad\!\! \!{\Delta} {E}]\,=\,KF(k)[N_{1}\quad\!\! N_{2}\quad\!\! N_{3}\quad\!\! N_{4}\quad\!\! {N}_{5}],\!$$

Φ, Ψand Υ1can berewritten as follows:

$$\begin{array}{@{}rcl@{}} &&{} {\Phi}={\Sigma}_{2}+{\Sigma}_{4}F^{T}(k)K^{T}P, \quad {\Psi}={\Sigma}_{3}+{\Sigma}_{4}F^{T}(k)K^{T}Z_{1},\\ &&{}{\Upsilon}_{1}={\Sigma}_{5}+{\Upsilon}_{3}{F}^{T}(k){\Upsilon}_{4}. \end{array} $$

In the light of Lemma 3, we know that (28) is true if and only if the following inequality holds:

$$\left[ \begin{array}{cccc} {\Sigma}_{1} & {\Sigma}_{2}+{\Sigma}_{4}F^{T}(k)K^{T}P &\sqrt{\tau}({\Sigma}_{3}+{\Sigma}_{4}F^{T}(k)K^{T}Z_{1}) &{\Sigma}_{5}+{\Upsilon}_{3}{F}^{T}(k){\Upsilon}_{4}\\ \ast & - P & 0 & 0 \\ \ast & \ast & -Z_{1} &0 \\ \ast & \ast &\ast &-{\Upsilon}_{2} \end{array} \right]<0 $$

which isequivalently written as

$$\begin{array}{@{}rcl@{}} &&{\kern-7.4pt}\left[ \begin{array}{cccc} {\Sigma}_{1} & {\Sigma}_{2} & \sqrt{\tau}{\Sigma}_{3}&{\Sigma}_{5}\\ \ast & - P & 0 & 0 \\ \ast & \ast & -Z_{1} & 0 \\ \ast & \ast &\ast & -{\Upsilon}_{2} \\ \end{array} \right] +\left[ \begin{array}{cc} 0 &0\\ PK &0 \\ \sqrt{\tau} Z_{1}K &0\\ 0 &{\Upsilon}_{4}^{T}\\ \end{array} \right]F(k) \left[ \begin{array}{cccc} {{\Sigma}_{4}^{T}}&0&0 &0\\ {\Upsilon}_{3}^{T}&0&0 &0\\ \end{array} \right]\\ &&{\kern-7.4pt}+\left[ \begin{array}{cc} {\Sigma}_{4}&{\Upsilon}_{3} \\ 0 &0\\ 0 &0\\ 0 &0\\ \end{array} \right]F^{T}(k) \left[ \begin{array}{cccc} 0&K^{T}P&\sqrt{\tau}K^{T}Z_{1}&0\\ 0&0&0&{{\Upsilon}}_{4}\\ \end{array} \right]<0. \end{array} $$
(29)

Furthermore, it follows from Lemma 1 that (29) holds if and only if there exists a positive scalar ε such thatthe following inequality holds:

$$\begin{array}{@{}rcl@{}} &&{\kern-7.4pt}\left[ \begin{array}{cccc} {\Sigma}_{1} & {\Sigma}_{2} & \sqrt{\tau}{\Sigma}_{3}&{\Sigma}_{5}\\ \ast & - P & 0 & 0 \\ \ast & \ast & -Z_{1} & 0 \\ \ast & \ast &\ast & -{\Upsilon}_{2} \\ \end{array} \right] +\varepsilon^{-1} \left[ \begin{array}{cc} 0 &0\\ PK &0 \\ \sqrt{\tau} Z_{1}K &0\\ 0 &{{\Upsilon}}^{T}_{4}\\ \end{array} \right]\\ &&{\kern-7.4pt}\times\left[ \begin{array}{cccc} 0&K^{T}P&\sqrt{\tau}K^{T}Z_{1}&0\\ 0&0&0&{{\Upsilon}}_{4}\\ \end{array} \right]\\ &&{\kern-7.4pt}+\varepsilon \left[ \begin{array}{cc} {\Sigma}_{4}&{\Upsilon}_{3} \\ 0 &0\\ 0 &0\\ 0 &0\\ \end{array} \right] \left[ \begin{array}{cccc} {{\Sigma}_{4}^{T}}&0&0 &0\\ {\Upsilon}_{3}^{T}&0&0 &0\\ \end{array} \right]<0. \end{array} $$
(30)

Again, by Lemma 3, inequality (30) holds if and only if (7) holds. Since (7) is true, we have shown that (30), and therefore (28), holds. Theproof is now complete. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Dong, H., Wang, Z. et al. On passivity and robust passivity for discrete-time stochastic neural networks with randomly occurring mixed time delays. Neural Comput & Applic 31, 65–78 (2019). https://doi.org/10.1007/s00521-017-2980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2980-1

Keywords

Navigation