Skip to main content
Log in

Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Particular matter (PM) due to its side effects on human health like increase the risk of lung cancer and vision impairment has been one of the major concerns for air quality. These particles are now considered as one of the high priorities issues by health organizations in China. In this study, daily PM2.5 and PM10 concentrations data from November 2013 to January 2014 in Hangzhou, Shanghai and Nanjing (three important cities in Yangtze River delta of China) were used to introduce more suitable method to forecast air PM2.5 and PM10 concentrations. Feed-forward neural networks (FFNN) have been introduced as a possible forecasting model for complex air quality prediction. However, due to its deficiency to assess the possible correlation between different input variables, an enhanced FFNN with rolling mechanism (RM) and accumulated generating operation (AGO) of gray model (RM-GM-FFNN) was developed. RM and AGO were used to address the trends of input samples of FFNN and detract the randomness of the input data of FFNN, respectively. Both FFNN and RM-GM-FFNN were tested for prediction of the daily PM2.5 and PM10 concentrations with meteorological parameters and historical PM concentration during the given time. The numerical results showed that in all cases, the coefficient of determination (R 2) and the index of agreement of RM-GM-FFNN increased, while the root-mean-square error (RMSE) and mean absolute error of RM-GM-FFNN decreased. In addition, the mean bias error was more close to zero when compared with that of FFNN, indicating that RM-GM-FFNN performed a better accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng Z, Wang S, Jiang J, Fu Q, Chen C, Xu B, Yu J, Fu X, Hao J (2013) Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ Pollut 182:101–110. doi:10.1016/j.envpol.2013.06.043

    Article  Google Scholar 

  2. Wang T, Jiang F, Deng J, Shen Y, Fu Q, Wang Q, Fu Y, Xu J, Zhang D (2012) Urban air quality and regional haze weather forecast for Yangtze River Delta region. Atmos Environ 58:70–83. doi:10.1016/j.atmosenv.2012.01.014

    Article  Google Scholar 

  3. Zhang F, Wang W, Lv J, Krafft T, Xu J (2011) Time-series studies on air pollution and daily outpatient visits for allergic rhinitis in Beijing, China. Sci Total Environ 409:2486–2492. doi:10.1016/j.scitotenv.2011.04.007

    Article  Google Scholar 

  4. Pao HT, Fu HC, Tseng CL (2012) Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy 40:400–409. doi:10.1016/j.energy.2012.01.037

    Article  Google Scholar 

  5. Noori R, Hoshyaripour G, Ashrafi K, Araabi BN (2010) Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmos Environ 44:476–482. doi:10.1016/j.atmosenv.2009.11.005

    Article  Google Scholar 

  6. Antanasijević DZ, Pocajt VV, Povrenović DS, Ristić MD, Perić-Grujić AA (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. doi:10.1016/j.scitotenv.2012.10.110

    Article  Google Scholar 

  7. Perez P (2012) Combined model for PM10 forecasting in a large city. Atmos Environ 60:271–276. doi:10.1016/j.atmosenv.2012.06.024

    Article  Google Scholar 

  8. Du J, Rutkowski L, Er MJ (2010) An efficient adaptive fuzzy neural network (EAFNN) approach for short term load forecasting. Intell Autom Soft Co 6113:49–57. doi:10.1007/978-3-642-13208-7_7

    Google Scholar 

  9. Tuo Z, Wang L (2011) Improved BP neural network’s application in the bank earlywarning. Procedia Eng 23:216–221. doi:10.1016/j.proeng.2011.11.2492

    Article  Google Scholar 

  10. Russo A, Raischel F, Lind PG (2013) Air quality prediction using optimal neural networks with stochastic variables. Atmos Environ 79:822–830. doi:10.1016/j.atmosenv.2013.07.072

    Article  Google Scholar 

  11. Fernando HJS, Mammarella MC, Grandoni G, Fedele P, Marco RD, Dimitrova R, Hyde P (2012) Forecasting PM10 in metropolitan areas: efficacy of neural networks. Environ Pollut 163:62–67. doi:10.1016/j.envpol.2011.12.018

    Article  Google Scholar 

  12. Zhao Z, Wang J, Zhao J, Su Z (2012) Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China. Omega 40:525–532. doi:10.1016/j.omega.2011.10.003

    Article  Google Scholar 

  13. Kayacan E, Ulutas B, Kaynak O (2010) Grey system theory-based models in time series prediction. Expert Syst Appl 37:1784–1789. doi:10.1016/j.eswa.2009.07.064

    Article  Google Scholar 

  14. Grivas G, Chaloulakou A (2006) Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos Environ 40:1216–1229. doi:10.1016/j.atmosenv.2005.10.036

    Article  Google Scholar 

  15. Perez P, Reyes J (2006) An integrated neural network model for PM10 forecasting. Atmos Environ 40:2845–2851. doi:10.1016/j.atmosenv.2006.01.010

    Article  Google Scholar 

  16. Polat K, Durduran SS (2012) Usage of output-dependent data scaling in modeling and prediction of air pollution daily concentration values (PM10) in the city of Konya. Neural Comput Appl 21:2153–2162. doi:10.1007/s00521-011-0661-z

    Article  Google Scholar 

  17. Lal B, Tripathy SS (2012) Prediction of dust concentration in open cast coal mine using artificial neural network. Atmos Pollut Res 3:211–218. doi:10.5094/APR.2012.023

    Article  Google Scholar 

  18. Cai M, Yin Y, Xie M (2009) Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transp Res D 14:32–41. doi:10.1016/j.trd.2008.10.004

    Article  Google Scholar 

  19. Zheng H, Shang X (2013) Study on prediction of atmospheric PM2.5 based on RBF neural network. In: 2013 Fourth International Conference on Digital Manufacturing and Automation (ICDMA), Qingdao, pp 1287–1289. doi:10.1109/ICDMA.2013.306

  20. Akay D, Atak M (2007) Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32:1670–1675. doi:10.1016/j.energy.2006.11.014

    Article  Google Scholar 

  21. Truong DQ, Ahn KK (2012) An accurate signal estimator using a novel smart adaptive grey model SAGM(1,1). Expert Syst Appl 39:7611–7620. doi:10.1016/j.eswa.2012.01.002

    Article  Google Scholar 

  22. Hong S, Jiao L, Ma W (2013) Variation of PM2.5 concentration in Hangzhou, China. Particuology 11:55–62. doi:10.1016/j.partic.2012.04.008

    Article  Google Scholar 

  23. Zhou G, Yang F, Geng F, Xu J, Yang X, Tie X (2014) Measuring and modeling aerosol: relationship with haze events in Shanghai, China. Aerosol Air Qual Res 14:783–792. doi:10.4209/aaqr.2013.01.0019

    Google Scholar 

  24. Kang H, Zhu B, Su J, Wang H, Zhang Q, Wang F (2013) Analysis of a long-lasting haze episode in Nanjing, China. Environ Res 120–121:78–87. doi:10.1016/j.atmosres.2012.08.004

    Google Scholar 

  25. http://www.tianqihoubao.com/aqi/. Accessed 8 Aug 2014

  26. http://www.wunderground.com/history/airport/ZSNJ/2013/12/1/DailyHistory.html. Accessed 8 Aug 2014

  27. Díaz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, Moncada-Herrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos Environ 42:8331–8340. doi:10.1016/j.atmosenv.2008.07.020

    Article  Google Scholar 

  28. Polat K (2011) A novel data preprocessing method to estimate the air pollution (SO2): neighbor-based feature scaling (NBFS). Neural Comput Appl 21(8):1987–1994. doi:10.1007/s00521-011-0602-x

    Article  Google Scholar 

  29. Zhou QP, Jiang HY, Wang JZ, Zhou JL (2014) A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci Total Environ 496(274):274. doi:10.1016/j.scitoten.2014.07.051

    Google Scholar 

  30. Voukantsis D, Karatzas K, Kukkonen J, Räsänen T, Karppinen A, Kolehmainen M (2011) Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci Total Environ 409:1266–1276. doi:10.1016/j.scitotenv.2010.12.039

    Article  Google Scholar 

  31. Moustris KP, Larissi IK, Nastos PT, Koukouletsos KV, Paliatsos AG (2013) Development and application of artificial neural network modeling in forecasting PM10 levels in a Mediterranean city. Water Air Soil Pollut 224:1634. doi:10.1007/s11270-013-1634-x

    Article  Google Scholar 

  32. Cheng S, Li L, Chen D, Li J (2012) A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling. J Environ Manage 112:404–414. doi:10.1016/j.jenvman.2012.08.020

    Article  Google Scholar 

  33. Cobourn WG (2010) An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos Environ 40(3015):3023. doi:10.1016/j.atmosenv.2010.05.009

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the public industrial technology research project of Zhejiang province, China (No. 2013C31075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, M., Wang, W., Le, Z. et al. Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model. Neural Comput & Applic 26, 1789–1797 (2015). https://doi.org/10.1007/s00521-015-1853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1853-8

Keywords

Navigation