Skip to main content

Advertisement

Log in

Squirrel-cage induction generator system using hybrid wavelet fuzzy neural network control for wind power applications

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An intelligent controlled three-phase squirrel-cage induction generator (SCIG) system for grid-connected wind power applications using hybrid wavelet fuzzy neural network (WFNN) is proposed in this study. First, the indirect field-oriented mechanism is implemented for the control of the SCIG system. Then, an AC/DC power converter and a DC/AC power inverter are developed to convert the electric power generated by a three-phase SCIG to power grid. Moreover, the dynamic model of the SCIG system and an ideal computed torque controller are developed for the control of the square of DC-link voltage. Furthermore, an intelligent hybrid WFNN controller and two WFNN controllers, which are computation intensive approaches, are proposed for the AC/DC power converter and the DC/AC power inverter, respectively, to improve the transient and steady-state responses of the SCIG system at different operating conditions. In the intelligent hybrid WFNN controller, to relax the requirement of the lumped uncertainty in the design of the ideal computed torque controller, a WFNN is designed as an uncertainty observer to adapt the lumped uncertainty online. Finally, the feasibility and effectiveness of the SCIG system for grid-connected wind power applications are verified with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(T_{e}\) :

Electromagnetic torque

\(P_{M}\) :

Pole number

\(L_{m}\) :

Mutual inductance

\(L_{r}\) :

Rotor inductance

\(i_{qs}\) :

q-axis stator current

\(\theta_{m}\) :

Mechanical angular position of rotor

\(\omega_{m}\) :

Mechanical angular speed of rotor

\(\theta_{r}\) :

Angular position of rotor

\(\omega_{r}\) :

Angular speed of rotor

\(\theta_{e}\) :

Electric angular angle

\(\theta_{e}^{{\prime }}\) :

Synchronous angle

\(i_{qs}^{*}\) :

Torque control current

\(i_{ds}^{*}\) :

Flux control current

\(\omega_{sl}\) :

Slip speed

\(T_{r}\) :

Time-constant of the rotor

\(i_{a}^{*} , \, i_{b}^{*} , \, i_{c}^{*}\) :

Three-phase current commands

\(T_{a}^{{}} , \, T_{b}^{{}} \, ,T_{c}^{{}}\) :

PWM signals of converter

\(i_{a}^{{}} , \, i_{b}^{{}} , \, i_{c}^{{}}\) :

Three-phase currents of SCIG

\(i_{dc}\) :

DC-link current

\(V_{dc}^{*2}\) :

Square of DC-link voltage command

\(V_{dc}^{2}\) :

Square of DC-link voltage

\(i_{ds}^{{{\prime }*}}\) :

Active power control current

\(i_{qs}^{{{\prime }*}}\) :

Reactive power control current

\(i_{u}^{*} , \, i_{v}^{*} , \, i_{w}^{*}\) :

Three-phase current commands of DC/AC power inverter

\(T_{a}^{{\prime }} , \, T_{b}^{{\prime }} ,T_{c}^{{\prime }}\) :

PWM signals of inverter

\(i_{u}^{{\prime }} , \, i_{v}^{{\prime }} , \, i_{w}^{{\prime }}\) :

Three-phase currents of inverter

\(i_{u}^{{}} , \, i_{v}^{{}} , \, i_{w}\) :

Three-phase currents

\(V_{u}^{{}} , \, V_{v}^{{}} , \, V_{w}\) :

Three-phase voltages

\(P_{{}}^{*}\) :

Active power command of inverter

\(Q_{{}}^{*}\) :

Reactive power command of inverter

\(P\) :

Active power of inverter

\(Q\) :

Reactive power of inverter

\(R_{m}\) :

Turbine rotor radius

\(\lambda\) :

Tip ratio

ρ :

Density

A :

Exposed area

\(\eta_{m}\) :

Mechanical transmission efficiency

\(\eta_{g}\) :

Power efficiency of SCIG system

\(T_{m}\) :

Mechanical torque of the prime mover

J :

Inertia of prime mover and SCIG

B :

Damping coefficient of prime mover and SCIG

C :

Capacitor and the voltage of DC-link

\(V_{dc} (t)\) :

Voltage of DC-link

K 1, K 2 :

Constants

A n :

Nominal value of A

\(B_{n} (t)\) :

Nominal value of B(t)

\(C_{n} (t)\) :

Nominal value of C(t)

\(D_{n} (t)\) :

Nominal value of D(t)

A(t):

Uncertainty

B(t):

Uncertainty

C(t):

Uncertainty

D(t):

Uncertainty

W(t):

Lumped uncertainty

\(U_{A} (t)\) :

Computed torque controller

\(U_{C} (t)\) :

Compensated controller

k 1, k 2 :

Nonzero positive constants

Γ :

Collections of adjustable parameters of WFNN

N :

Nth iteration

n :

Total number of linguistic variables

σ j :

Standard deviation of Gaussian function

m j :

Mean of Gaussian function

\(w_{jk}^{3}\) :

Connective weight between rule layer and membership layer

\(\,y_{j}^{2}\) :

jth input to node of layer 3

\(\phi_{ik}\) :

ith in kth term wavelet output

\(w_{ik}^{4}\) :

Wavelet weight in WF k layer

\(\psi_{k}\) :

kth term WF k output to node of wavelet layer

\(y_{l}^{4}\) :

lth input to node of layer 5

\(w_{l}^{5}\) :

Connective weight between output layer and wavelet layer

\(\varGamma^{*}\) :

Optimal weight vector

\(\eta_{{{w}1}} ,\eta_{{{w}2}}\) :

Learning rates of connective weights

\(\eta_{\sigma } ,\eta_{m}\) :

Learning rates of standard deviations and means

\(\it M_{{b}}\) :

Upper bound of \({\mathbf{w}}^{{\mathbf{5}}}\)

\({\kern 1pt} \left\| \cdot \right\|\) :

Two-norm of vector

\(\text{sgn} ( \cdot )\) :

Sign function

η :

Positive constant

P :

Symmetric positive definite matrix

References

  1. Xu Z, Hu Q, Ehsani M (2012) Estimation of effective wind speed for fixed-speed wind turbines based on frequency domain data fusion. IEEE Trans Sustain Energy 3(1):57–64

    Article  Google Scholar 

  2. Global Wind Energy Council (2012) Global wind report 2011. http://www.gwec.net/publications/global-wind-report-2/global-wind-report-2010-2/. Accessed March 2012

  3. Pao LY, Johnson KE (2011) Control of wind turbines. IEEE Power Control Syst Mag 31(2):44–62

    Article  MathSciNet  Google Scholar 

  4. Al-Bahadly I (2011) Wind turbine. InTech, Croatia

    Book  Google Scholar 

  5. Tazil M, Kumar V, Bansal RC, Kong S, Dong ZY (2010) Three-phase doubly fed induction generators: an overview. IET Electr Power Appl 4(2):75–89

    Article  Google Scholar 

  6. Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator systems for wind turbines. IEEE Ind Appl Mag 8(3):26–33

    Article  Google Scholar 

  7. Cheng Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24(8):1859–1875

    Article  Google Scholar 

  8. Yang Y, Chen Y, Jia Z, Liqiao W, Wu W (2010) Development of 22 kW experimental platform for wind power generation system using SCIG. In: Proceedings of 2010 IEEE international symposium on power electronics for distributed generation systems, Hefei, 16–18 June 2010, pp 593–596

  9. Goel PK, Singh B, Murthy SS, Kishore N (2011) Isolated wind–hydro hybrid system using cage generators and battery storage. IEEE Trans Ind Electron 58(4):1141–1153

    Article  Google Scholar 

  10. Ahmed T, Nishida K, Nakaoka M (2007) A novel stand-alone induction generator system for AC and DC power applications. IEEE Trans Ind Appl 43(6):1465–1474

    Article  Google Scholar 

  11. Yazdani A, Dash PP (2009) A control methodology and characterization of dynamics for a photovoltaic (PV) system interfaced with a distribution network. IEEE Trans Power Deliv 24(3):1538–1551

    Article  Google Scholar 

  12. Lin FJ, Huang MS, Yeh PY, Tsai HC, Kuan CH (2012) DSP-based probabilistic fuzzy neural network control for Li-Ion battery charger. IEEE Trans Power Electron 27(8):3782–3794

    Article  Google Scholar 

  13. Lin FJ, Shieh HJ, Huang PK, Teng LT (2006) Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator. IEEE Trans Ultrason Ferroelectr Freq Control 53(9):1649–1661

    Article  Google Scholar 

  14. Lin WM, Hong CM (2011) A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems. IEEE Trans Power Electron 26(2):473–481

    Article  Google Scholar 

  15. Lin WM, Hong CM, Chen CH (2011) Neural-network-based MPPT control of a stand-alone hybrid power generation system. IEEE Trans Power Electron 26(12):3571–3581

    Article  Google Scholar 

  16. Song Y, Gao L (2011) Incremental battery model using wavelet-based neural networks. IEEE Trans Compon Pack Manuf Technol 1(7):1075–1081

    Article  MathSciNet  Google Scholar 

  17. Pan H, Xia LZ (2008) Efficient object recognition using boundary representation and wavelet neural network. IEEE Trans Neural Netw 19(12):2132–2149

    Article  Google Scholar 

  18. Teng LT, Lin FJ, Chiang HC, Lin JW (2009) Recurrent wavelet neural network controller with improved particle swarm optimisation for induction generator system. IET Electr Power Appl 3(2):147–159

    Article  Google Scholar 

  19. Lin FJ, Tan KH, Chiu JH (2012) Active islanding detection method using wavelet fuzzy neural network. In: Proceedings of 2012 IEEE international conference on fuzzy systems, Brisbane, 10–15 June 2012, pp 1–8

  20. Bhaskar K, Singh SN (2012) AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3(2):306–315

    Article  MathSciNet  Google Scholar 

  21. Yilmaz AS, Özer Z (2009) Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst Appl 36(6):9767–9775

    Article  Google Scholar 

  22. Duong MQ, Grimaccia F, Leva S, Mussetta M, Ogliari E (2014) Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system. Renew Energy 70:197–203

    Article  Google Scholar 

  23. Timbus A, Teodorescu R, Blaabjerg F, Liserre M (2005) Synchronization methods for three phase distributed power generation systems - an overview and evaluation. In: Proceedings of IEEE 36th power electronics specialists conference, Recife, 16 June 2005, pp 2474–2481

  24. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53(5):1398–1409

    Article  Google Scholar 

  25. Lin FJ, Hung YC, Tsai MT (2013) Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNN-AMF. IEEE Trans Ind Electron 60(12):2157–2169

    Article  Google Scholar 

  26. Lin FJ, Teng LT, Shieh PH, Li YF (2006) Intelligent controlled wind turbine emulator and induction generator system using RBFN. IET Electr Power Appl 153(4):608–618

    Article  Google Scholar 

  27. Lin FJ, Teng LT, Yu MH (2008) Radial basis function network control with improved particle swarm optimization for induction generator system. IEEE Trans Power Electron 23(4):2157–2169

    Article  Google Scholar 

  28. Teodorescu R, Blaabjerg F (2004) Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode. IEEE Trans Power Electron 19(5):1323–1332

    Article  Google Scholar 

  29. Lin FJ, Wai RJ, Hong CM (2001) Hybrid supervisory control using recurrent fuzzy neural network for tracking periodic inputs. IEEE Trans Neural Netw 12(1):68–90

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the financial support of Institute of Nuclear Energy Research of Taiwan, R.O.C. through its Grant 1012001INER046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faa-Jeng Lin.

Appendix

Appendix

Theorem 1

Considering the SCIG system represented by (16), if the hybrid WFNN control law is designed in (20), in which the computed torque control law is designed in (24), the adaptation law of the WFNN is designed in (43), and the compensated control is designed in (44), then the asymptotical stability of the control system is guaranteed.

$$({\mathbf{w}}^{{\mathbf{5}}} )^{{\prime }} = \eta {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} {\mathbf{y}}^{{\mathbf{4}}}$$
(43)
$$U_{{C}} (t) = - B_{{n}}^{ - 1} (t)\delta \text{sgn} ({\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} )$$
(44)

Proof

A Lyapunov function is defined as

$$V(t) = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PE}} + \frac{1}{2\eta }[{\mathbf{w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} ]^{\rm T} [{\mathbf{w}}^{{{\mathbf{5}}*}} - {\mathbf{w}}^{{\mathbf{5}}} ]$$
(45)

where \({\mathbf{P}}\) satisfies the following Lyapunov equation:

$${\varvec{\Lambda}}^{{\mathbf{T}}} {\mathbf{P}} + {\mathbf{P\Lambda }} = - {\mathbf{Q}}$$
(46)

and \({\mathbf{Q}} > 0\) is selected by the designer. Take the derivative of the Lyapunov function and use (31), (32) and (46), then

$$\begin{aligned} V^{{\prime }} (t) & = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PE}}^{{\prime }} + \frac{1}{2}{\mathbf{E}}^{{{\prime }{\mathbf{T}}}} {\mathbf{PE}} - \frac{1}{\eta }[{\mathbf{w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} ]^{{\mathbf{T}}} ({\mathbf{w}}^{{\mathbf{5}}} )^{{\prime }} \\ & {\kern 1pt} = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{P}}\Lambda {\mathbf{E}} + \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\varvec{\Lambda}}^{{\mathbf{T}}} {\mathbf{PE}} + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} \{ [{\mathbf{w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} ]^{{\mathbf{T}}} {\mathbf{y}}^{{\mathbf{4}}} + \varepsilon (t) + B_{{n}} (t)U_{{C}} (t)\} \\ & \quad - \frac{1}{\eta }{\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{w}}^{{\prime }} \\ & = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} [\varepsilon (t) + B_{{n}} (t)U_{C} (t)] \\ & \quad + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} {\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{y}}^{{\mathbf{4}}} - \frac{1}{\eta }{\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{(w}}^{{\mathbf{5}}} {\mathbf{)}}^{{\prime }} \\ \end{aligned}$$
(47)

To satisfy \(V^{{\prime }} (t) \le 0\), the update law \(({\mathbf{w}}^{{\mathbf{5}}} )^{{\prime }}\) and the compensated controller \(U_{{C}} (t)\) are designed as (43) and (44). Substitute (43) into (47) and use (44), then

$$\begin{aligned} {\kern 1pt} V^{{\prime }} (t) & = - \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} \varepsilon (t) + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} B_{{n}} (t)U_{{C}} (t) \\ & \le - \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + \left| {{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} } \right|{\kern 1pt} {\kern 1pt} \left| {\varepsilon (t)} \right| + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} B_{{n}} (t)U_{{C}} (t) \\ & \le - \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} \le 0 \\ \end{aligned}$$
(48)

Since \(V^{{\prime }} (t) \le 0\), \(V^{{\prime }} (t)\) is negative semidefinite (i.e. \(V(t) \le V(0)\)), which implies \({\kern 1pt} {\mathbf{E}}\) and \({\mathbf{[w}}^{{{\mathbf{5}}*}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}}\) are bounded. Define function \(\Theta (t) = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} \le - V^{\prime}(t)\), and integrate function \(\Theta (t)\) with respect to time

$$\int_{0}^{t} {\Theta (\tau ){\text{d}}\tau } \le V(0) - V(t)$$
(49)

Because \(V(0)\) is bounded, and \(V(t)\) is nonincreasing and bounded, then

$$\mathop {\lim }\limits_{t \to \infty } \int_{0}^{t} {\Theta (\tau ){\text{d}}\tau } \le \infty$$
(50)

Differentiate with respect to time

$$\Theta^{{\prime }} (t) = {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}}^{{\prime }}$$
(51)

Since all the variables in the right-hand side of (32) are bounded, it implies \({\mathbf{E}}^{{\prime }}\) is also bounded. Then, \(\Theta^{{\prime }} (t)\) is uniformly continuous. By using the Barbalat’s lemma, it can be shown that \(\mathop {\lim }\limits_{t \to \infty } \Theta (t) = 0\). Thus, \({\kern 1pt} {\mathbf{E}} \to 0\) as \(t \to \infty\). As a result, the hybrid WFNN control system is asymptotically stable.

Theorem 2

Considering the SCIG system shown in (16 ), if the hybrid WFNN control law is designed in (20), in which the computed torque control law is designed in (24), the adaptation law of the WFNN is designed in (42), and the compensated control is designed in (44), then the asymptotical stability of the control system is guaranteed.

Proof

When the condition \(\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\| \le M_{{b}}\) or \(\left( {\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\| = M_{{b}} \,{\text{and}}\,{\kern 1pt} {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} {\mathbf{w}}^{{{\mathbf{5}}{\text{T}}}} {\mathbf{y}}^{{\mathbf{4}}} \le 0} \right)\) holds, the stability analysis is the same as Theorem 1. On the other hand, when \(\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\| = M_{{b}} {\kern 1pt}\) and \({\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} {\mathbf{w}}^{{{\mathbf{5T}}}} {\mathbf{y}}^{{\mathbf{4}}} > 0\), the derivative of the Lyapunov function shown in (47) can be redescribed as follows:

$$\begin{aligned} V^{{\prime }} (t) & = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} [\varepsilon (t) + B_{{n}} (t)U_{{C}} (t)] + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} {\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{y}}^{{\mathbf{4}}} - \frac{1}{\eta }{\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} ({\mathbf{w}}^{{\mathbf{5}}} )^{{\prime }} \\ & = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} [\varepsilon (t) + B_{{n}} (t)U_{{C}} (t)] + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} {\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{y}}^{{\mathbf{4}}} - \frac{1}{\eta }{\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} \\ & \quad \times \left( {\eta {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} {\mathbf{y}}^{{\mathbf{4}}} - {\mathbf{\eta E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} \frac{{{\mathbf{w}}^{{\mathbf{5}}} {\mathbf{w}}^{{{\mathbf{5T}}}} {\mathbf{y}}^{{\mathbf{4}}} }}{{\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} }}} \right) \\ & = \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} [\varepsilon (t) + B_{{n}} (t)U_{{C}} (t)] + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} \frac{{{\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{w}}^{{\mathbf{5}}} }}{{\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} }}{\mathbf{w}}^{{{\mathbf{5T}}}} {\mathbf{y}}^{{\mathbf{4}}} \\ \end{aligned}$$
(52)

Using the characteristic \({\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{w}}^{{\mathbf{5}}} = \frac{1}{2}\left( {\left\| {{\mathbf{w}}^{{{\mathbf{5*}}}} } \right\|^{2} - \left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} - \left\| {{\mathbf{w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} } \right) < 0\), which is based on \(\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\| = M_{{b}} > {\kern 1pt} {\kern 1pt} \left\| {{\mathbf{w}}^{{{\mathbf{5}}*}} } \right\|\), then

$$\begin{aligned} V^{{\prime }} (t) & \le - \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + \left| {{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} } \right|{\kern 1pt} {\kern 1pt} \left| {\varepsilon (t)} \right| + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} B_{{n}} (t)U_{{C}} (t) + {\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} \frac{{{\mathbf{[w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} {\mathbf{]}}^{{\mathbf{T}}} {\mathbf{w}}^{{\mathbf{5}}} }}{{\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} }}{\mathbf{w}}^{{{\mathbf{5T}}}} {\mathbf{y}}^{{\mathbf{4}}} \\ & \le - \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} + \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{PB}}_{{\mathbf{P}}} \frac{{\left\| {{\mathbf{w}}^{{{\mathbf{5*}}}} } \right\|^{2} - \left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} - \left\| {{\mathbf{w}}^{{{\mathbf{5*}}}} - {\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} }}{{\left\| {{\mathbf{w}}^{{\mathbf{5}}} } \right\|^{2} }}{\mathbf{w}}^{{{\mathbf{5T}}}} {\mathbf{y}}^{{\mathbf{4}}} \\ & \le - \frac{1}{2}{\mathbf{E}}^{{\mathbf{T}}} {\mathbf{QE}} \le 0 \\ \end{aligned}$$
(53)

By using Barbalat’s lemma as shown in Theorem 1, \({\kern 1pt} {\mathbf{E}} \to 0\) as \(t \to \infty\). Therefore, the stability property also can be guaranteed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, FJ., Tan, KH. & Fang, DY. Squirrel-cage induction generator system using hybrid wavelet fuzzy neural network control for wind power applications. Neural Comput & Applic 26, 911–928 (2015). https://doi.org/10.1007/s00521-014-1759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1759-x

Keywords

Navigation