Skip to main content
Log in

Feature selection using swarm-based relative reduct technique for fetal heart rate

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Fetal heart rate helps in diagnosing the well-being and also the distress of fetal. Cardiotocograph (CTG) monitors the fetal heart activity to estimate the fetal tachogram based on the evaluation of ultrasound pulses reflected from the fetal heart. It consists in a simultaneous recording and analysis of fetal heart rate signal, uterine contraction activity and fetal movements. Generally CTG comprises more number of features. Feature selection also called as attribute selection is a process of selecting a subset of highly relevant features which is responsible for future analysis. In general, medical datasets require more number of features to predict an activity. This paper aims at identifying the relevant and ignores the redundant features, consequently reducing the number of features to assess the fetal heart rate. The features are selected by using unsupervised particle swarm optimization (PSO)-based relative reduct (US-PSO-RR) and compared with unsupervised relative reduct and principal component analysis. The proposed method is then tested by applying various classification algorithms such as single decision tree, multilayer perceptron neural network, probabilistic neural network and random forest for maximum number of classes and clustering accuracies like root mean square error, mean absolute error, Davies–Bouldin index and Xie–Beni index for minimum number of classes. Empirical results show that the US-PSO-RR feature selection technique outperforms the existing methods by producing sensitivity of 72.72 %, specificity of 97.66 %, F-measure of 74.19 % which is remarkable, and clustering results demonstrate error rate produced by US-PSO-RR is less as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geijn HP (1996) Developments in CTG analysis. Bailliere’s Clin. Obstet. Gynaecol. 10(2):185–209

    Article  Google Scholar 

  2. Steer PJ (2008) Has electronic fetal heart rate monitoring made a difference. Semin. Fetal Neonat. Med. 13:2–7

    Article  Google Scholar 

  3. FIGO (1986) Guidelines for the use of fetal monitoring. Int. J. Gynecol. Obstet. 25:159–167

    Google Scholar 

  4. Gonçalves H, Rocha AP, De Campos DA, Bernardes J (2006) Linear and nonlinear fetal heart rate analysis of normal and acidemic fetuses in the minutes preceding delivery. Med. Biol. Eng. Comput. 44(10):847–855

    Article  Google Scholar 

  5. Magenes G, Signorini MG, Arduini D (2000) Classification of cardiotocographic records by neural networks. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks IJCNN, vol 3, pp 637–641

  6. Salamalekis E, Thomopoulos P, Giannaris D, Salloum I, Vasios G, Prentza A, Koutsouris D (2002) Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks. BJOG 109(10):1137–1142

    Article  Google Scholar 

  7. Georgoulas G, Stylios C, Groumpos P (2005). Classification of fetal heart rate using scale dependent features and support vector machines. In: Proceedings of 16th IFAC world congress

  8. Leski J (2003) Neuro-fuzzy system with learning tolerant to imprecision. Fuzzy Sets Syst 138:427–439

    Article  MathSciNet  Google Scholar 

  9. Czabanski R, Jezewski M, Wrobel J, Horoba K, Jezewski J (2008). A neurofuzzy approach to the classification of fetal cardiotocograms. In: Proceedings of 14th international conference NBC2008, vol 20, pp 446–449

  10. Czabanski R, Jezewski M, Wrobel J, Jezewski J, Horoba K (2010) Predicting the risk of low-fetal birth weight from cardiotocographic signals using ANBLIR system with deterministic annealing and e-insensitive learning. IEEE Trans Inf Technol Biomed 14:1062–1074

    Article  Google Scholar 

  11. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  12. Vapnik V (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999

    Article  Google Scholar 

  13. Magenes G, Signorini MG, Arduini D (2000) Classification of cardiotocographic records by neural networks. In: Proceedings of the IEEE-INNSENNS international joint conference on neural networks (IJCNN’00), vol 3, pp 637–641

  14. Magenes G, Signorini MG, Sassi R, Arduini D (2001) Multiparametric analysis of fetal heart rate: comparison of neural and statistical classifiers. In: 9th mediterranean conference on medical and biological engineering and computing (MEDICON 2001), IFMBE Proceedings, 12–15 June 2001, Pula, Croatia, vol 1, pp 360–363

  15. Georgoulas G, Stylios C, Bernardes J, Groumpos PP (2004) Classification of cardiotocograms using Support Vector Machines. In: Proceedings 10th IFAC symposium on large scale systems: theory and applications (LSS’04), 26–28 July 2004, Osaka, Japan

  16. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

    Article  MATH  MathSciNet  Google Scholar 

  17. Nizar Banu PK, Hannah Inbarani H (2012) Performance evaluation of hybridized rough set based unsupervised approaches for gene selection. Int J Comput Intell Inf 2(2):132–141

    Google Scholar 

  18. Costa A, Ayres-de-Campos D, Costa F, Santos C, Bernardes J (2009) Prediction of neonatal acidemia by computer analysis of fetal heart rate and ST event signals. Am J Obstet Gynecol 201(5):464.e1–464.e6

    Article  Google Scholar 

  19. Georgoulas G, Stylios CD, Groumpos PP (2006) Feature extraction and classification of fetal heart rate using wavelet analysis and support vector machines. Int J Artif Intell Tools 15(3):411–432

    Article  Google Scholar 

  20. Georgoulas G, Stylios C, Groumpos P (2006) Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans Biomed Eng 53(5):875–884

    Article  Google Scholar 

  21. Warrick P, Hamilton E, Precup D, Kearney R (2010) Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Trans Biomed Eng 57(4):771–779

    Article  Google Scholar 

  22. Chaffin DG, Goldberg CC, Reed KL (1991) The dimension of chaos in the fetal heart rate. Am J Obstet Gynecol 165(4):1425–1429

    Article  Google Scholar 

  23. Gough NA (1993) Fractal analysis of foetal heart rate variability. Physiol Meas 14(3):309–315

    Article  Google Scholar 

  24. Felgueiras CS, Marques de Sá JP, Bernardes J, Gama S (1998) Classification of foetal heart rate sequences based on fractal features. Med Biol Eng Comput 36(2):197–201

    Article  Google Scholar 

  25. Kikuchi A, Unno N, Horikoshi T, Shimizu T, Kozuma S, Taketani Y (2005) Changes in fractal features of fetal heart rate during pregnancy. Early Hum Dev 81(8):655–661

    Article  Google Scholar 

  26. Georgoulas G, Gavrilis D, Tsoulos IG, Stylios C, Bernardes J, Groumpos PP (2007) Novel approach for fetal heart rate classification introducing grammatical evolution. Biomed Signal Process Control 2(2):69–79

    Article  Google Scholar 

  27. Van Laar J, Porath M, Peters C, Oei S (2008) Spectral analysis of fetal heart rate variability for fetal surveillance: review of the literature. Acta Obstet Gynecol Scand 87(3):300–306

    Article  Google Scholar 

  28. Van Laar J, Peters CHL, Houterman S, Wijn PFF, Kwee A, Oei SG (2011) Normalized spectral power of fetal heart rate variability is associated with fetal scalp blood pH. Early Hum Dev 87(4):259–263

    Article  Google Scholar 

  29. Hopkins P, Outram N, Zofgren N, Ifeachor EC, Rosen KG (2006) A comparative study of fetal heart rate variability analysis techniques. In: Proceedings of the 28th annual international conference of the ieee engineering in medicine and biology society, pp 1784–1787

  30. Pincus SM, Viscarello RR (1992) Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet Gynecol 79(2):249–255

    Google Scholar 

  31. Ferrario M, Signorini MG, Magenes G, Cerutti S (2006) Comparison of entropy based regularity estimators: application to the fetal heart rate signal for the identification of fetal distress. IEEE Trans Biomed Eng 53(1):119–125

    Article  Google Scholar 

  32. Gonçalves H, Bernardes J, Rocha AP, Ayres-de-Campos D (2007) Linear and nonlinear analysis of heart rate patterns associated with fetal behavioral states in the antepartum period. Early Hum Dev 83(9):585–591

    Article  Google Scholar 

  33. Ferrario M, Signorini M, Magenes G (2009) Complexity analysis of the fetal heart rate variability: early identification of severe intrauterine growth-restricted fetuses. Med Biol Eng Comput 47(9):911–919

    Article  Google Scholar 

  34. Spilka J, Chudáček V, Koucký M, Lhotská L, Huptych M, Janku P, Georgoulas G, Stylios C (2012) Using nonlinear features for fetal heart rate classification. Biomed Signal Process Control 7(4):350–357

    Article  Google Scholar 

  35. Questier F, Rollier IA, Walczak B, Massart DL (2002) Application of rough set theory to feature selection for unsupervised clustering. Chemometr Intell Lab Syst 63(2):155–167

    Article  Google Scholar 

  36. Zhang J, Wang J, Li D, He H, Sun J (2003) A new heuristic reduct algorithm base on rough sets theory. LNCS, vol 2762, pp 247–253. Springer, Berlin

  37. Swiniarski RW, Skowron A (2003) Rough set methods in feature selection and recognition. Pattern Recognit Lett 24(6):833–849

    Article  MATH  Google Scholar 

  38. Thangavel K, Pethalakshmi A (2009) Dimensionality reduction based on rough set theory: a review. Appl Soft Comput 9(1):1–12

    Article  Google Scholar 

  39. Echeverría JC, Άlvarez-Ramírez J, Pena MA, Rodríguez E, Gaitán MJ, González-Camarena R (2012) Fractal and nonlinear changes in the long-term baseline fluctuations of fetal heart rate. Med Eng Phys 34(4):466–471

    Article  Google Scholar 

  40. Skinner J, Garibaldi J, Ifeachor E (1999) A fuzzy system for fetal heart rate assessment. In: Reusch B (ed) Computational intelligence. Lecture notes in computer science, vol 1625. Springer, Berlin, pp 20–29

    Google Scholar 

  41. Skinner J, Garibaldi J, Curnow J, Ifeachor E (2000) Intelligent fetal heart rate analysis. In: 1st International conference on advances in medical signal and information processing, pp 14–21

  42. Keith R, Beckley S, Garibaldi J (1995) A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. Br J Obstet Gynaecol 102(9):688–700

    Article  Google Scholar 

  43. Signorini M, de Angelis A, Magenes G, Sassi R, Arduini D, Cerutti S (2000). Classification of fetal pathologies through fuzzy inference systems based on a multiparametric analysis of fetal heart rate. In: Computers in cardiology, pp 435–438. Cambridge, MA

  44. Arduini D, Giannini F, Magnes G, Signorini MG, Meloni P (2001). Fuzzy logic in the management of new prenatal variables. In: Proceedings of 5th world congress of perinatal medicine, Barcelona, vol 1, pp 1211–1216

  45. Huang YP, Huang YH, Sandnes FE (2006) A fuzzy inference method-based fetal distress monitoring system. In: IEEE international symposium on industrial electronics, vol 1, pp 55–60, 9–13 July 2006, Montreal, Que

  46. Hasbargen U (1994) Application of neural networks for intrapartum surveillance. In: van Geijn H, Copray F (eds) A critical appraisal of fetal surveillance. Elsevier Science (Excerpta Medica), Amsterdam, New York, pp 363–367

    Google Scholar 

  47. Beksac M, Ozdemir K, Erkmen A, Karakas U (1994) Assessment of antepartum fetal heart rate tracings using neural networks. In: van Geijn H, Copray F (eds) A critical appraisal of fetal surveillance. Elsevier Science (Excerpta Medica), Amsterdam, New York, pp 354–362

    Google Scholar 

  48. Magenes G, Signorini M G, Arduini D (2000) Classification of cardiotocographic records by neural networks. In: Proceedings IEEE-INNS-ENNS international joint conference on neural networks IJCNN, vol 3, pp 637–641

  49. Magenes G, Signorini M, Sassi R, Arduini D (2001). Multiparametric analysis of fetal heart rate: comparison of neural and statistical classifiers. In: IFMBE proceedings of MEDICON, vol 1, pp 360–363

  50. Noguchi Y, Matsumoto F, Maed K, Nagasawa T (2009) Neural network analysis and evaluation of the fetal heart rate. Algorithms 2:19–30

    Article  Google Scholar 

  51. Jezewski M, Wrobel J, Horoba K, Gacek A, Henzel N, Leski J (2007) The prediction of fetal outcome by applying neural network for evaluation of CTG records. In: Kurzynski M, Puchala E, Wozniak M, Zolnierek A (eds) Computer recognition systems 2. Advances in intelligent and soft computing, vol 45. Springer, Berlin, pp 532–541

    Google Scholar 

  52. Jezewski M, Czabanski R, Wrobel J, Horoba K (2010) Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybernetics and Biomedical Engineering 30:39–47

    Google Scholar 

  53. Frize M, Ibrahim D, Seker H, Walker R, Odetayo M, Petrovic D, Naguib R (2004) Predicting clinical outcomes for newborns using two artificial intelligence approaches. In: Engineering in medicine and biology society, IEMBS’04. Proceedings of 26th annual international conference of the IEEE, vol 2, pp 3202–3205

  54. Azar AT, Nizar Banu PK, Hannah Inbarani H (2013) PSORR—An unsupervised feature selection technique for fetal heart rate. In: Proceedings of the 5th international conference on modelling, Identification and control (ICMIC 2013), Aug 31–Sept 2 2013. Cairo, Egypt, pp 60–65

  55. Komorowski J, Pawlak Z, Polkowski L, Skowron A (1999) Rough sets: a tutorial. In: Pal SK, Skowron A (eds) Rough fuzzy hybridization: a new trend in decision making. Springer, Berlin, pp 3–98

    Google Scholar 

  56. Kalyani P, Karnan M (2011) A new implementation of attribute reduction using quick relative reduct algorithm. Int J Internet Comput 1(1):99–102

    Google Scholar 

  57. Lin TY, Cercone N (1997) Rough sets and data mining: analysis of imprecise data. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  58. Hu XT, Lin TY, Han J (2003) A new rough sets model based on database systems. In: Rough sets, fuzzy sets, data mining, and granular computing. Lecture notes in computer science, vol 2639, pp 114–121. doi:10.1007/3-540-39205-X_15

  59. Hannah Inbarani H, Nizar Banu PK (2012) Unsupervised hybrid PSO—relative reduct approach for feature reduction. In: Proceedings of the international conference on pattern recognition, informatics and medical engineering (PRIME), pp 103–108. doi:10.1109/ICPRIME.2012.6208295

  60. Velayutham C, Thangavel K (2011) Unsupervised feature selection using rough sets. In: Proceedings of the international conference-emerging trends in computing, pp 307–314

  61. Velayutham C, Thangavel K (2011) Unsupervised quick reduct algorithm using rough set theory. J Electron Sci Technol 9(3):193–201

    Google Scholar 

  62. Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml. University of California, School of Information and Computer Science, Irvine, CA

  63. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, NewYork

    Google Scholar 

  64. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, Belmont, CA

    MATH  Google Scholar 

  65. Bridle JS (1989) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Fougelman-Soulie F (ed) Neurocomputing: algorithms, architectures and applications. Springer, Berlin, pp 227–236

    Google Scholar 

  66. Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

  67. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  68. De Franca OF, Ferreira HM, Von Zuben FJ (2007) Applying biclustering to perform collaborative filtering. In: Proceedings of the seventh international

  69. Xi XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  70. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannah Inbarani, H., Nizar Banu, P.K. & Azar, A.T. Feature selection using swarm-based relative reduct technique for fetal heart rate. Neural Comput & Applic 25, 793–806 (2014). https://doi.org/10.1007/s00521-014-1552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1552-x

Keywords

Navigation