Skip to main content
Log in

Self-tuning output recurrent cerebellar model articulation controller for a wheeled inverted pendulum control

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, a model-free self-tuning output recurrent cerebellar model articulation controller (SORCMAC) is investigated to control a wheeled inverted pendulum (WIP). Since the proposed SORCMAC captures the system dynamics, it has superior capability compared to the conventional cerebellar model articulation controller in terms of an efficient learning mechanism and dynamic response. The dynamic gradient descent method is also adopted to adjust the SORCMAC parameters online. Moreover, an analytical method based on a Lyapunov function is proposed to determine the learning rates of the SORCMAC so that the convergence of the system can be guaranteed. Finally, the effectiveness of the proposed control system is verified by simulations of the WIP control. Simulation results show that the WIP can move forward and backward stably with uncertainty disturbance by using the proposed SORCMAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ren TJ, Chen TC, Chen CJ (2008) Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Eng Pract 16(3):365–375

    Article  MathSciNet  Google Scholar 

  2. Jung S, Kim SS (2008) Control experiment of a wheel-driven mobile inverted pendulum using neural network. IEEE Control Syst Technol 16(2):297–303

    Article  MathSciNet  Google Scholar 

  3. Grasser F, D’Arrigo A, Colombi S, Rufer AC (2002) JOE: a mobile, inverted pendulum. IEEE Trans Ind Electron 39(1):107–114

    Article  Google Scholar 

  4. Pathak K, Franch J, Agrawal SK (2005) Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans Robot 21(3):505–513

    Article  Google Scholar 

  5. Sashida T, Kenjo T (1993) An introduction to ultrasonic motors. Clarendon, Oxford

    Google Scholar 

  6. He S, Chen W, Tao X, Chen Z (1998) Standing wave bi-directional linearly moving ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1133–1139

    Article  Google Scholar 

  7. Er MJ, Kee BH, Tan CC (2002) Design and development of an intelligent control for a pole-balancing robot. Microprocess Microsyst 26:433–448

    Article  Google Scholar 

  8. Agarwal A (1997) A systematic classification of neural-network-based control. IEEE Control Syst Mag 17:75–93

    Article  Google Scholar 

  9. Kuschewski JG, Hui S, Zak SH (1993) Application of feed-forward neural networks to dynamical system identification and control. IEEE Trans Control Syst Technol 1(1):37–49

    Article  Google Scholar 

  10. Lin CM, Hsu CF (2002) Neural-network-based adaptive control for induction servomotor drive system. IEEE Trans Ind Electron 49(1):115–123

    Article  Google Scholar 

  11. Chow TWS, Fang Y (1998) A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Trans Ind Electron 45(1):151–161

    Article  MathSciNet  Google Scholar 

  12. Lin CM, Hsu CF (2002) Recurrent neural network adaptive control of wing-rock motion. J Guid Control Dyn 25(6):1163–1165

    Article  MathSciNet  Google Scholar 

  13. Hwang CL, Jan C, Chen YH (2001) Piezomechanics using intelligent variable-structure control. IEEE Trans Ind Electron 48(1):47–59

    Article  Google Scholar 

  14. Hsu CF (2009) Design of intelligent power controller for DC-DC converter using CMAC neural network. Neural Comput Appl 18(1):93–103

    Article  Google Scholar 

  15. Hwang KS, Lin CS (1998) Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach. IEEE Trans Syst Man Cybern B 28(5):680–692

    Article  MATH  Google Scholar 

  16. Gonzalez-Serrano FJ, Figueiras-Vidal AR, Artes-Rodriguez A (1998) Generalizing CMAC architecture and training. IEEE Trans Neural Netw 9(6):1509–1514

    Article  Google Scholar 

  17. Jan JC, Hung SL (2001) High-order MS_CMAC neural network. IEEE Trans Neural Netw 12(3):598–603

    Article  Google Scholar 

  18. Chen JY, Tsai PS, Wong CC (2005) Adaptive design of a fuzzy cerebellar model arithmetic controller neural network. IEEE Proc Control Theory Appl 152(2):133–137

    Article  Google Scholar 

  19. Chiang CT, Lin CS (1996) CMAC with general basis functions. Neural Netw 9(7):1199–1211

    Article  Google Scholar 

  20. Kim YH, Lewis FL (2000) Optimal design of CMAC neural-network controller for robot manipulators. IEEE Trans Syst Man Cybern C 30(1):22–31

    Article  Google Scholar 

  21. Lee CH, Teng CC (2000) Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 8(4):349–366

    Article  Google Scholar 

  22. Lin FJ, Shyu KK, Wai RJ (2001) Recurrent-fuzzy-neural-network sliding-mode controlled motor-toggle servomechanism. IEEE/ASME Trans Mechatron 6(4):453–466

    Article  Google Scholar 

  23. Chow TWS, Fang Y (1998) A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Trans Ind Electron 45(1):151–161

    Article  MathSciNet  Google Scholar 

  24. Jagannathan S (1999) Discrete-time CMAC NN control of feedback linearizable nonlinear systems under a persistence of excitation. IEEE Trans Neural Netw 10(1):128–137

    Article  Google Scholar 

  25. Lin FJ, Lin CM, Hong CM (2000) Robust control of linear synchronous motor servodrive using disturbance observer and recurrent neural network compensator. IEEE Proc Electr Power Appl 147(4):263–272

    Article  Google Scholar 

  26. Peng YF, Wai RJ, Lin CM (2004) Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor. IEEE Trans Ind Electron 51(1):35–48

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan, ROC under the Grant NSC96-2221-E-155-072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hui Chiu.

Appendix

Appendix

1.1 Proof of Theorem 1

Since

$$ {\mathbf{P}}_{s} (N) = {\frac{{{\kern 1pt} \partial u}}{{\partial \,{\mathbf{s}}}}} \quad \hbox{for} \, s = w, n, v \; \hbox{and}\; r$$

it follows that

$$ {\mathbf{P}}_{w} (N) = {\frac{\partial u}{{\partial {\mathbf{w}}}}} = \left[ {{\frac{\partial u}{{\partial w_{1} }}}, \ldots ,{\frac{\partial u}{{\partial w_{k} }}}, \ldots ,{\frac{\partial u}{{\partial w_{{n_{R} }} }}}} \right]^{T} $$
(A1)
$$ {\mathbf{P}}_{m} (N) = {\frac{\partial u}{{\partial {\mathbf{m}}}}} = \left[ {{\frac{\partial u}{{\partial m_{11} }}}, \ldots ,{\frac{\partial u}{{\partial m_{n1} }}}, \ldots ,{\frac{\partial u}{{\partial m_{1k} }}}, \ldots ,{\frac{\partial u}{{\partial m_{ik} }}}, \ldots ,{\frac{\partial u}{{\partial m_{nk} }}}, \ldots, {\frac{\partial u}{{\partial m_{{1n_{R} }} }}}, \ldots ,{\frac{\partial u}{{\partial m_{{nn_{R} }} }}}} \right]^{T} $$
(A2)
$$ {\mathbf{P}}_{v} (N) = {\frac{\partial u}{{\partial {\mathbf{v}}}}} = \left[ {{\frac{\partial u}{{\partial v_{11} }}}, \ldots ,{\frac{\partial u}{{\partial v_{n1} }}}, \ldots ,{\frac{\partial u}{{\partial v_{1k} }}}, \ldots ,{\frac{\partial u}{{\partial v_{ik} }}}, \ldots ,{\frac{\partial u}{{\partial v_{nk} }}}, \ldots ,{\frac{\partial u}{{\partial v_{{1n_{R} }} }}}, \ldots ,{\frac{\partial u}{{\partial v_{{nn_{R} }} }}}} \right]^{T} $$
(A3)
$$ {\mathbf{P}}_{r} (N) = {\frac{\partial u}{{\partial {\mathbf{r}}}}} = \left[ {{\frac{\partial u}{{\partial r_{1} }}},{\frac{\partial u}{{\partial r_{2} }}}, \ldots ,{\frac{\partial u}{{\partial r_{n} }}}} \right]^{T} $$
(A4)

where \( {\frac{\partial u}{{\partial w_{k} }}} = b_{k} \), \( {\frac{\partial u}{{\partial m_{ik} }}} = w_{k} b_{k} {\frac{{2(x_{ri} - m_{ik} )}}{{v_{ik}^{2} }}} \), \( {\frac{\partial u}{{\partial v_{ik} }}} = w_{k} b_{k} {\frac{{2(x_{ri} - m_{ik} )^{2} }}{{v_{ik}^{3} }}} \) and \( {\frac{\partial u}{{\partial r_{i} }}} = {\frac{1}{{r_{i} }}}y(N - 1). \) Define a Lyapunov function as

$$ V(N) = {\frac{1}{2}}\,e_{m}^{2} (N) $$
(A5)

Then, the change of the Lyapunov function is obtained as

$$ \Updelta V(N) = V(N + 1) - V(N) = {\frac{1}{2}}\left[ {e_{m}^{2} (N + 1) - e_{m}^{2} (N)} \right] $$
(A6)

where \( e_{m} (N + 1) \) is represented by

$$ e_{m} (N + 1) = e_{m} (N) + \Updelta e_{m} (N) = e_{m} (N) + \left[ {{\frac{{\partial e_{m} (N)}}{{\partial {\mathbf{s}}}}}} \right]^{T} \Updelta {\mathbf{s}} $$
(A7)

Using (17), it is clear that

$$ {\frac{{\partial e_{m} }}{{\partial {\mathbf{s}}}}} = {\frac{{\partial e_{m} }}{{\partial \theta_{p} }}}\,{\frac{{\partial \theta_{p} }}{\partial u}}\,{\frac{\partial u}{{\partial {\mathbf{s}}}}} = - {\frac{{\rho_{p} }}{{e_{m} (N)}}}\,{\mathbf{P}}_{s} (N) $$
(A8)

Thus,

$$ \begin{aligned} e_{m} (N + 1) = &\; e_{m} (N) - \left[ {{\frac{{\rho_{p} }}{{e_{m} (N)}}}\,{\mathbf{P}}_{s} (N)} \right]^{T} \beta_{s} \rho_{p} {\mathbf{P}}_{s} (N) \\ = &\; e_{m} (N)\left[ {1 - \beta_{s} \left( {{\frac{{\rho_{p} }}{{e_{m} (N)}}}} \right)^{2} {\mathbf{P}}_{s}^{T} (N){\mathbf{P}}_{s} (N)} \right] \\ \end{aligned} $$
(A9)

From (A6) and (A9), \( \Updelta V(N) \) can be represented as

$$ \Updelta V(N) = {\frac{1}{2}}\,\beta_{s} \rho_{p}^{2} ||{\mathbf{P}}_{s} (N)||^{2} \left[ {\beta_{s} \left( {{\frac{{\rho_{p} }}{{e_{m} (N)}}}} \right)^{2} ||{\mathbf{P}}_{s} (N)||^{2} - 2} \right] $$
(A10)

If β s is chosen as \( 0 < \beta_{s} < {\frac{2}{{||{\mathbf{P}}_{s} (N)||^{2} \left[ {{{\rho_{p} } \mathord{\left/ {\vphantom {{\rho_{p} } {e_{m} (N)}}} \right. \kern-\nulldelimiterspace} {e_{m} (N)}}} \right]^{2} }}} \), \( \Updelta V(N) \) in (A10) is less than 0. Therefore, the Lyapunov stability of \( V > 0 \) and \( \Updelta V < 0 \) is guaranteed. Moreover, the optimal learning rates are chosen as \( \beta_{s}^{*} = {\frac{1}{{||{\mathbf{P}}_{s} (N)||^{2} \left[ {{{\rho_{p} } \mathord{\left/ {\vphantom {{\rho_{p} } {e_{m} (N)}}} \right. \kern-\nulldelimiterspace} {e_{m} (N)}}} \right]^{2} }}} \). This shows an interesting result of the variable optimal learning rates which can be adjusted online at each instant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CH. Self-tuning output recurrent cerebellar model articulation controller for a wheeled inverted pendulum control. Neural Comput & Applic 19, 1153–1164 (2010). https://doi.org/10.1007/s00521-009-0335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0335-2

Keywords

Navigation