Skip to main content

Advertisement

Log in

Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy

  • Review
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Primers 317002. https://doi.org/10.1038/nrdp.2017.2

  2. Seretny M, Currie GL, Sena ES et al (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155:2461–2470. https://doi.org/10.1016/J.PAIN.2014.09.020

    Article  PubMed  Google Scholar 

  3. Flatters SJL, Dougherty PM, Colvin LA (2017) Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): a narrative review. Br J Anaesth 119:737–749. https://doi.org/10.1093/BJA/AEX229

    Article  PubMed  CAS  Google Scholar 

  4. Colvin LA (2019) Chemotherapy-induced peripheral neuropathy: where are we now? Pain 160(Suppl):S1–S10. https://doi.org/10.1097/J.PAIN.0000000000001540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bai Y-G, Gao G-X, Zhang H et al (2020) Prognostic value of tumor-infiltrating lymphocyte subtypes in residual tumors of patients with triple-negative breast cancer after neoadjuvant chemotherapy. Chin Med J (Engl) 133:552–560. https://doi.org/10.1097/CM9.0000000000000656

    Article  PubMed  PubMed Central  Google Scholar 

  6. Von Delius S, Eckel F, Wagenpfeil S et al (2007) Carbamazepine for prevention of oxaliplatin-related neurotoxicity in patients with advanced colorectal cancer: final results of a randomised, controlled, multicenter phase II study. Invest New Drugs 25:173–180. https://doi.org/10.1007/S10637-006-9010-Y

    Article  Google Scholar 

  7. Gandara DR, Nahhas WA, Adelson MD et al (1995) Randomized placebo-controlled multicenter evaluation of diethyldithiocarbamate for chemoprotection against cisplatin-induced toxicities. J Clin Oncol 13:490–496. https://doi.org/10.1200/JCO.1995.13.2.490

    Article  PubMed  CAS  Google Scholar 

  8. Leal AD, Qin R, Atherton PJ et al (2014) North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled study. Cancer 120:1890–1897. https://doi.org/10.1002/CNCR.28654

    Article  PubMed  CAS  Google Scholar 

  9. Schloss JM, Colosimo M, Airey C et al (2017) A randomised, placebo-controlled trial assessing the efficacy of an oral B group vitamin in preventing the development of chemotherapy-induced peripheral neuropathy (CIPN). Support Care Cancer 25:195–204. https://doi.org/10.1007/S00520-016-3404-Y

    Article  PubMed  Google Scholar 

  10. Loprinzi CL, Lacchetti C, Bleeker J et al (2020) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol 38:3325–3348. https://doi.org/10.1200/JCO.20.01399

    Article  PubMed  Google Scholar 

  11. Bae EH, Greenwald MK, Schwartz AG (2021) Chemotherapy-induced peripheral neuropathy: mechanisms and therapeutic avenues. Neurotherapeutics 18:2384–2396. https://doi.org/10.1007/S13311-021-01142-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nelke C, Schroeter CB, Pawlitzki M et al (2022) Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 28:850–863. https://doi.org/10.1016/J.MOLMED.2022.07.003

    Article  PubMed  CAS  Google Scholar 

  13. Martínez-Cué C, Rueda N (2020) Cellular senescence in neurodegenerative diseases. Front Cell Neurosci 14:16. https://doi.org/10.3389/FNCEL.2020.00016

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408. https://doi.org/10.1038/nrc3960

    Article  PubMed  CAS  Google Scholar 

  15. Gorgoulis V, Adams PD, Alimonti A et al (2019) Cellular senescence: defining a path forward. Cell 179:813–827. https://doi.org/10.1016/j.cell.2019.10.005

    Article  PubMed  CAS  Google Scholar 

  16. Wiley CD, Campisi J (2021) The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 3:1290–1301. https://doi.org/10.1038/S42255-021-00483-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lee BY, Han JA, Im JS et al (2006) Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5:187–195. https://doi.org/10.1111/j.1474-9726.2006.00199.x

    Article  PubMed  CAS  Google Scholar 

  18. Sasaki M, Kumazaki T, Takano H et al (2001) Senescent cells are resistant to death despite low Bcl-2 level. Mech Ageing Dev 122:1695–1706. https://doi.org/10.1016/S0047-6374(01)00281-0

    Article  PubMed  CAS  Google Scholar 

  19. Zhang R, Poustovoitov MV, Ye X et al (2005) Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30. https://doi.org/10.1016/j.devcel.2004.10.019

    Article  PubMed  CAS  Google Scholar 

  20. Hernandez-Segura A, de Jong TV, Melov S et al (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 27:2652–2660. https://doi.org/10.1016/j.cub.2017.07.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Basisty N, Kale A, Jeon OH et al (2020) A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 18:e3000599. https://doi.org/10.1371/journal.pbio.3000599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990. https://doi.org/10.1038/ncb2784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Saleh T, Bloukh S, Carpenter VJ et al (2020) Therapy-induced senescence: an “Old” Friend Becomes the enemy. Cancers (Basel) 12:822. https://doi.org/10.3390/cancers12040822

    Article  PubMed  CAS  Google Scholar 

  25. Saleh T, Alhesa A, Al-Balas M et al (2021) Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Biosci Rep 41:BSR20210079. https://doi.org/10.1042/bsr20210079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. El-Sadoni M, Al SS, Alhesa A et al (2023) A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol 91:345–360. https://doi.org/10.1007/S00280-023-04523-W

    Article  PubMed  CAS  Google Scholar 

  27. Domen A, Deben C, De Pauw I et al (2022) Prognostic implications of cellular senescence in resected non-small cell lung cancer. Transl Lung Cancer Res 11:1526–1539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Domen A, Deben C, Verswyvel J et al (2022) Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res 41:360. https://doi.org/10.1186/S13046-022-02555-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Al Shboul S, El-Sadoni M, Alhesa A et al (2023) NOXA expression is downregulated in human breast cancer undergoing incomplete pathological response and senescence after neoadjuvant chemotherapy. Sci Rep 13:15903. https://doi.org/10.1038/s41598-023-42994-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Saleh T, Bloukh S, Hasan M, Al Shboul S (2023) Therapy-induced senescence as a component of tumor biology: evidence from clinical cancer. Biochim Biophys Acta-Reviews Canceri 1878:188994. https://doi.org/10.1016/J.BBCAN.2023.188994

    Article  CAS  Google Scholar 

  31. Demaria M, Leary MNO, Chang J et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–177. https://doi.org/10.1158/2159-8290.CD-16-0241

    Article  PubMed  CAS  Google Scholar 

  32. Acklin S, Zhang M, Du W et al (2020) Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Sci Rep 10:14170. https://doi.org/10.1038/s41598-020-71042-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Calls A, Torres-Espin A, Navarro X et al (2021) Cisplatin-induced peripheral neuropathy is associated with neuronal senescence-like response. Neuro Oncol 23:88–99. https://doi.org/10.1093/NEUONC/NOAA151

    Article  PubMed  CAS  Google Scholar 

  34. Bousset L, Gil J (2022) Targeting senescence as an anticancer therapy. Mol Oncol 16:3855–3880. https://doi.org/10.1002/1878-0261.13312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chaib S, Tchkonia T, Kirkland JL (2022) Cellular senescence and senolytics: the path to the clinic. Nat Med 28:1556–1568. https://doi.org/10.1038/S41591-022-01923-Y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pachman DR, Qin R, Seisler D et al (2016) Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505). Support Care Cancer 24:5059–5068. https://doi.org/10.1007/S00520-016-3373-1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kolb NA, Smith AG, Singleton JR et al (2016) The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol 73:860–866. https://doi.org/10.1001/JAMANEUROL.2016.0383

    Article  PubMed  PubMed Central  Google Scholar 

  38. Park SB, Goldstein D, Krishnan AV et al (2013) Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 63:419–437. https://doi.org/10.3322/CAAC.21204

    Article  PubMed  Google Scholar 

  39. Molassiotis A, Cheng HL, Lopez V, Au JSK, Chan A, Bandla A, Leung KT, Li YC, Wong KH, Suen LKP, Chan CW, Yorke J, Farrell C, Sundar R (2019) Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 19(1):132. https://doi.org/10.1186/S12885-019-5302-4

  40. Kamgar M, Greenwald MK, Assad H et al (2021) Prevalence and predictors of peripheral neuropathy after breast cancer treatment. Cancer Med 10:6666–6676. https://doi.org/10.1002/CAM4.4202

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kaiser K, Lyleroehr M, Shaunfield S et al (2020) Neuropathy experienced by colorectal cancer patients receiving oxaliplatin: a qualitative study to validate the functional assessment of cancer therapy/gynecologic oncology group-neurotoxicity scale. World J Gastrointest Oncol 12:205–218. https://doi.org/10.4251/WJGO.V12.I2.205

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mols F, Beijers T, Vreugdenhil G, Van De Poll-Franse L (2014) Chemotherapy-induced peripheral neuropathy and its association with quality of life: a systematic review. Support Care Cancer 22:2261–2269. https://doi.org/10.1007/S00520-014-2255-7

    Article  PubMed  Google Scholar 

  43. Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol 14(Suppl 4):iv45-54. https://doi.org/10.1093/NEUONC/NOS203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Smith EML, Pang H, Cirrincione C et al (2013) Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 309:1359–1367. https://doi.org/10.1001/JAMA.2013.2813

    Article  PubMed  PubMed Central  Google Scholar 

  45. Olsen Y (2016) The CDC guideline on opioid prescribing: rising to the challenge. JAMA 315:1577–1579. https://doi.org/10.1001/JAMA.2016.1910

    Article  PubMed  Google Scholar 

  46. Avallone A, Bimonte S, Cardone C et al (2022) Pathophysiology and therapeutic perspectives for chemotherapy-induced peripheral neuropathy. Anticancer Res 42:4667–4678. https://doi.org/10.21873/ANTICANRES.15971

    Article  PubMed  CAS  Google Scholar 

  47. Zheng H, Xiao WH, Bennett GJ (2011) Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 232:154–161. https://doi.org/10.1016/J.EXPNEUROL.2011.08.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Carlson K, Ocean AJ (2011) Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin Breast Cancer 11:73–81. https://doi.org/10.1016/J.CLBC.2011.03.006

    Article  PubMed  CAS  Google Scholar 

  49. Flatters SJL, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122:245–257. https://doi.org/10.1016/J.PAIN.2006.01.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen YF, Chen LH, Yeh YM et al (2017) Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. Sci Rep 7:45366. https://doi.org/10.1038/SREP45366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jin HW, Flatters SJL, Xiao WH et al (2008) Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp Neurol 210:229–237. https://doi.org/10.1016/J.EXPNEUROL.2007.11.001

    Article  PubMed  CAS  Google Scholar 

  52. Nieto FR, Cendán CM, Cañizares FJ et al (2014) Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 10:11. https://doi.org/10.1186/1744-8069-10-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Xiao WH, Zheng H, Zheng FY et al (2011) Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 199:461–469. https://doi.org/10.1016/J.NEUROSCIENCE.2011.10.010

    Article  PubMed  CAS  Google Scholar 

  54. Imai S, Koyanagi M, Azimi Z et al (2017) Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci Rep 7:5947. https://doi.org/10.1038/S41598-017-05784-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xiao WH, Zheng H, Bennett GJ (2012) Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 203:194–206. https://doi.org/10.1016/J.NEUROSCIENCE.2011.12.023

    Article  PubMed  CAS  Google Scholar 

  56. Sharawy N, Rashed L, Youakim MF (2015) Evaluation of multi-neuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model. Exp Toxicol Pathol 67:315–322. https://doi.org/10.1016/J.ETP.2015.02.003

    Article  PubMed  CAS  Google Scholar 

  57. Jamieson SMF, Liu J, Connor B, McKeage MJ (2005) Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemother Pharmacol 56:391–399. https://doi.org/10.1007/S00280-004-0953-4

    Article  PubMed  CAS  Google Scholar 

  58. Zhang H, Dougherty PM (2014) Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy. Anesthesiology 120:1463–1475. https://doi.org/10.1097/ALN.0000000000000176

    Article  PubMed  CAS  Google Scholar 

  59. Li Y, North RY, Rhines LD et al (2018) DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 38:1124–1136. https://doi.org/10.1523/JNEUROSCI.0899-17.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sittl R, Lampert A, Huth T et al (2012) Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc Natl Acad Sci 109:6704–6709. https://doi.org/10.1073/PNAS.1118058109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Park SB, Goldstein D, Lin CSY et al (2009) Acute abnormalities of sensory nerve function associated with oxaliplatin-induced neurotoxicity. J Clin Oncol 27:1243–1249. https://doi.org/10.1200/JCO.2008.19.3425

    Article  PubMed  CAS  Google Scholar 

  62. Thibault K, Calvino B, Dubacq S et al (2012) Cortical effect of oxaliplatin associated with sustained neuropathic pain: exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex. Pain 153:1636–1647. https://doi.org/10.1016/J.PAIN.2012.04.016

    Article  PubMed  CAS  Google Scholar 

  63. Descoeur J, Pereira V, Pizzoccaro A et al (2011) Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med 3:266–278. https://doi.org/10.1002/EMMM.201100134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824. https://doi.org/10.1038/39807

    Article  PubMed  CAS  Google Scholar 

  65. Li Y, Adamek P, Zhang H et al (2015) The cancer chemotherapeutic paclitaxel increases human and rodent sensory neuron responses to TRPV1 by activation of TLR4. J Neurosci 35:13487–13500. https://doi.org/10.1523/JNEUROSCI.1956-15.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hara T, Chiba T, Abe K et al (2013) Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain 154:882–889. https://doi.org/10.1016/J.PAIN.2013.02.023

    Article  PubMed  CAS  Google Scholar 

  67. Ta LE, Bieber AJ, Carlton SM et al (2010) Transient receptor potential vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol Pain 6:15. https://doi.org/10.1186/1744-8069-6-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nassini R, Gees M, Harrison S et al (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152:1621–1631. https://doi.org/10.1016/J.PAIN.2011.02.051

    Article  PubMed  CAS  Google Scholar 

  69. Zhao M, Isami K, Nakamura S et al (2012) Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol Pain 8:55. https://doi.org/10.1186/1744-8069-8-55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Trevisan G, Materazzi S, Fusi C et al (2013) Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 73:3120–3131. https://doi.org/10.1158/0008-5472.CAN-12-4370

    Article  PubMed  CAS  Google Scholar 

  71. Proudfoot CJ, Garry EM, Cottrell DF et al (2006) Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol 16:1591–1605. https://doi.org/10.1016/J.CUB.2006.07.061

    Article  PubMed  CAS  Google Scholar 

  72. Storey DJ, Colvin LA, Mackean MJ et al (2010) Reversal of dose-limiting carboplatin-induced peripheral neuropathy with TRPM8 activator, menthol, enables further effective chemotherapy delivery. J Pain Symptom Manage 39:e2-4. https://doi.org/10.1016/J.JPAINSYMMAN.2010.02.004

    Article  PubMed  Google Scholar 

  73. Cavaletti G, Cavalletti E, Oggioni N et al (2001) Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. J Peripher Nerv Syst 6:61–61. https://doi.org/10.1046/J.1529-8027.2001.01008-5.X

    Article  Google Scholar 

  74. Melli G, Jack C, Lambrinos GL et al (2006) Erythropoietin protects sensory axons against paclitaxel-induced distal degeneration. Neurobiol Dis 24:525–530. https://doi.org/10.1016/J.NBD.2006.08.014

    Article  PubMed  CAS  Google Scholar 

  75. Siau C, Xiao W, Bennett GJ (2006) Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 201:507–514. https://doi.org/10.1016/J.EXPNEUROL.2006.05.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhang H, Boyette-Davis JA, Kosturakis AK et al (2013) Induction of monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy. J pain 14:1031–1044. https://doi.org/10.1016/J.JPAIN.2013.03.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Warwick RA, Hanani M (2013) The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 17:571–580. https://doi.org/10.1002/J.1532-2149.2012.00219.X

    Article  PubMed  CAS  Google Scholar 

  78. González H, Pacheco R (2014) T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation 11:201. https://doi.org/10.1186/S12974-014-0201-8

    Article  PubMed  PubMed Central  Google Scholar 

  79. Janes K, Wahlman C, Little JW et al (2015) Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immunitymmunity 44:91–99. https://doi.org/10.1016/J.BBI.2014.08.010

    Article  CAS  Google Scholar 

  80. Jin X, Gereau RW IV (2006) Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci 26:246–255. https://doi.org/10.1523/JNEUROSCI.3858-05.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sun JH, Yang B, Donnelly DF et al (2006) MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J Neurophysiol 96:2189–2199. https://doi.org/10.1152/JN.00222.2006

    Article  PubMed  CAS  Google Scholar 

  82. Li YY, Li H, Liu ZL et al (2017) Activation of STAT3-mediated CXCL12 up-regulation in the dorsal root ganglion contributes to oxaliplatin-induced chronic pain. Mol Pain 13:1744806917747425. https://doi.org/10.1177/1744806917747425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cho HS, Choi YI, Park SU et al (2023) Prevention of chemotherapy-induced peripheral neuropathy by inhibiting C-X-C motif chemokine receptor 2. Int J Mol Sci 24:1855. https://doi.org/10.3390/IJMS24031855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Park HJ, Stokes JA, Corr M, Yaksh TL (2014) Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother Pharmacol 73:25–34. https://doi.org/10.1007/S00280-013-2304-9

    Article  PubMed  CAS  Google Scholar 

  85. Li C, Deng T, Shang Z et al (2018) Blocking TRPA1 and TNF-α signal improves bortezomib-induced neuropathic pain. Cell Physiol Biochem 51:2098–2110. https://doi.org/10.1159/000495828

    Article  PubMed  CAS  Google Scholar 

  86. Xu D, Zhao H, Gao H et al (2018) Participation of pro-inflammatory cytokines in neuropathic pain evoked by chemotherapeutic oxaliplatin via central GABAergic pathway. Mol Pain 14:1744806918783535. https://doi.org/10.1177/1744806918783535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang Ys, Li Yy, Cui W et al (2017) Melatonin attenuates pain hypersensitivity and decreases astrocyte-mediated spinal neuroinflammation in a rat model of oxaliplatin-induced pain. Inflammation 40:2052–2061. https://doi.org/10.1007/S10753-017-0645-Y

    Article  PubMed  CAS  Google Scholar 

  88. Li Y, Zhang H, Zhang H et al (2014) Toll-like receptor 4 signaling contributes to paclitaxel-induced peripheral neuropathy. J Pain 15:712–725. https://doi.org/10.1016/J.JPAIN.2014.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhang H, Yoon SY, Zhang H, Dougherty PM (2012) Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of paclitaxel-induced painful neuropathy. J pain 13:293–303. https://doi.org/10.1016/J.JPAIN.2011.12.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Krukowski K, Eijkelkamp N, Laumet G et al (2016) CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J Neurosci 36:11074–11083. https://doi.org/10.1523/JNEUROSCI.3708-15.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Liu CC, Lu N, Cui Y et al (2010) Prevention of paclitaxel-induced allodynia by minocycline: effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain 6:76. https://doi.org/10.1186/1744-8069-6-76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Salvemini D, Doyle T, Chen Z et al (2012) Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci 32:6149–6160. https://doi.org/10.1523/JNEUROSCI.6343-11.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Li Y, Kang J, Xu Y, Li N, Jiao Y, Wang C, Wang C, Wang G, Yu Y, Yuan J, Zhang L (2022) Artesunate alleviates paclitaxel-induced neuropathic pain in mice by decreasing metabotropic glutamate receptor 5 activity and neuroinflammation in primary sensory neurons. Front Mol Neurosci 15:902572. https://doi.org/10.3389/fnmol.2022.902572

  94. Campisi J (1997) The biology of replicative senescence. Eur J Cancer 33:703–709. https://doi.org/10.1016/S0959-8049(96)00058-5

    Article  PubMed  CAS  Google Scholar 

  95. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. https://doi.org/10.1038/nrm2233

    Article  PubMed  CAS  Google Scholar 

  96. Fitsiou E, Soto-Gamez A, Demaria M (2022) Biological functions of therapy-induced senescence in cancer. Semin Cancer Biol 81:5–13. https://doi.org/10.1016/j.semcancer.2021.03.021

    Article  PubMed  CAS  Google Scholar 

  97. Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell 88:593–602. https://doi.org/10.1016/S0092-8674(00)81902-9

    Article  PubMed  CAS  Google Scholar 

  98. DeLuca VJ, Saleh T (2023) Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev 42:19–35. https://doi.org/10.1007/S10555-023-10082-6

    Article  PubMed  CAS  Google Scholar 

  99. Saleh T, Gewirtz DA (2022) Considering therapy-induced senescence as a mechanism of tumour dormancy contributing to disease recurrence. Br J Cancer 126:1363–1365. https://doi.org/10.1038/S41416-022-01787-6

    Article  PubMed  PubMed Central  Google Scholar 

  100. Milanovic M, Fan DNY, Belenki D et al (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553:96–100. https://doi.org/10.1038/nature25167

    Article  PubMed  CAS  Google Scholar 

  101. Qi Z, Zhang Y, Liu L et al (2012) Mesenchymal stem cells derived from different origins have unique sensitivities to different chemotherapeutic agents. Cell Biol Int 36:857–862. https://doi.org/10.1042/cbi20110637

    Article  PubMed  CAS  Google Scholar 

  102. Yosef R, Pilpel N, Papismadov N et al (2017) p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J 36:2280–2295. https://doi.org/10.15252/embj.201695553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhao H, Halicka HD, Traganos F et al (2010) New biomarkers probing depth of cell senescence assessed by laser scanning cytometry. Cytom Part A 77:999–1007. https://doi.org/10.1002/cyto.a.20983

    Article  CAS  Google Scholar 

  104. Probin V, Wang Y, Bai A, Zhou D (2006) Busulfan selectively induces cellular senescence but not apoptosis in WI38 fibroblasts via a p53-independent but extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent mechanism. J Pharmacol Exp Ther 319:551–560. https://doi.org/10.1124/jpet.106.107771

    Article  PubMed  CAS  Google Scholar 

  105. Probin V, Wang Y, Zhou D (2007) Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med 42:1858–1865. https://doi.org/10.1016/j.freeradbiomed.2007.03.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Cells MH, Meng A, Wang Y et al (2003) Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res 63:5414–5419

    Google Scholar 

  107. Marques L, Johnson AA, Stolzing A (2020) Doxorubicin generates senescent microglia that exhibit altered proteomes, higher levels of cytokine secretion, and a decreased ability to internalize amyloid β. Exp Cell Res 395:112203. https://doi.org/10.1016/J.YEXCR.2020.112203

    Article  PubMed  CAS  Google Scholar 

  108. Moruno-Manchon JF, Uzor NE, Kesler SR et al (2018) Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol Cell Neurosci 86:65. https://doi.org/10.1016/J.MCN.2017.11.014

    Article  PubMed  CAS  Google Scholar 

  109. Piechota M, Sunderland P, Wysocka A et al (2016) Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget 7:81099–81109. https://doi.org/10.18632/ONCOTARGET.12752

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bojko A, Czarnecka-Herok J, Charzynska A et al (2019) Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents. Cells 8:1501. https://doi.org/10.3390/cells8121501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Lérida-Viso A, Estepa-Fernández A, Morellá-Aucejo Á et al (2022) Pharmacological senolysis reduces doxorubicin-induced cardiotoxicity and improves cardiac function in mice. Pharmacol Res 183:106356. https://doi.org/10.1016/J.PHRS.2022.106356

    Article  PubMed  Google Scholar 

  112. Münz F, Lopez Perez R, Trinh T et al (2018) Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Sci Rep 8:312. https://doi.org/10.1038/S41598-017-18862-1

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ota H, Eto M, Ako J et al (2009) Sirolimus and everolimus induce endothelial cellular senescence via sirtuin 1 down-regulation: therapeutic implication of cilostazol after drug-eluting stent implantation. J Am Coll Cardiol 53:2298–2305. https://doi.org/10.1016/j.jacc.2009.01.072

    Article  PubMed  CAS  Google Scholar 

  114. Limbad C, Oron TR, Alimirah F et al (2020) Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS One 15:e0227887. https://doi.org/10.1371/JOURNAL.PONE.0227887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Turnquist C, Beck JA, Horikawa I et al (2019) Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro Oncol 21:474–485. https://doi.org/10.1093/NEUONC/NOZ001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Jurk D, Wang C, Miwa S et al (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11:996–1004. https://doi.org/10.1111/J.1474-9726.2012.00870.X

    Article  PubMed  CAS  Google Scholar 

  117. Park JT, Lee YS, Cho KA, Park SC (2018) Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Res Rev 47:176–182. https://doi.org/10.1016/j.arr.2018.08.003

    Article  PubMed  CAS  Google Scholar 

  118. Miwa S, Kashyap S, Chini E, von Zglinicki T (2022) Mitochondrial dysfunction in cell senescence and aging. J Clin Invest 132:e158447. https://doi.org/10.1172/JCI158447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wiley CD, Velarde MC, Lecot P et al (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314. https://doi.org/10.1016/J.CMET.2015.11.011

    Article  PubMed  CAS  Google Scholar 

  120. Wiel C, Lallet-Daher H, Gitenay D et al (2014) Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 5:3792. https://doi.org/10.1038/NCOMMS4792

    Article  PubMed  CAS  Google Scholar 

  121. Pradeepkiran JA, Baig J, Selman A, Reddy PH (2023) Mitochondria in aging and Alzheimer’s disease: focus on mitophagy. Neurosci. https://doi.org/10.1177/10738584221139761

    Article  Google Scholar 

  122. Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B et al (2019) Relationships between ion channels, mitochondrial functions and inflammation in human aging. Front Physiol 10:158. https://doi.org/10.3389/FPHYS.2019.00158

    Article  PubMed  PubMed Central  Google Scholar 

  123. Guerrero A, De Strooper B, Arancibia-Cárcamo IL (2021) Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci 44:714–727. https://doi.org/10.1016/J.TINS.2021.06.007

    Article  PubMed  CAS  Google Scholar 

  124. Nicaise AM, Wagstaff LJ, Willis CM, Paisie C, Chandok H, Robson P, Fossati V, Williams A, Crocker SJ (2019) Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc Natl Acad Sci U S A 116(18):9030–9039. https://doi.org/10.1073/pnas.1818348116

  125. Chambers ES, Vukmanovic-Stejic M, Shih BB et al (2021) Recruitment of inflammatory monocytes by senescent fibroblasts inhibits antigen-specific tissue immunity during human aging. Nat Aging 11(1):101–113. https://doi.org/10.1038/s43587-020-00010-6

    Article  Google Scholar 

  126. Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667. https://doi.org/10.1016/j.cell.2008.06.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sagiv A, Biran A, Yon M et al (2012) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32:1971–1977. https://doi.org/10.1038/onc.2012.206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ortiz-Montero P, Londoño-Vallejo A, Vernot JP (2017) Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal 15:1–18. https://doi.org/10.1186/s12964-017-0172-3

    Article  CAS  Google Scholar 

  129. Calvo-Rodríguez M, de la Fuente C, García-Durillo M et al (2017) Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation 14:24. https://doi.org/10.1186/S12974-017-0802-0

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mitin N, Nyrop KA, Strum SL et al (2022) A biomarker of aging, p16, predicts peripheral neuropathy in women receiving adjuvant taxanes for breast cancer. NPJ Breast Cancer 8:103. https://doi.org/10.1038/S41523-022-00473-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Liu Y, Sanoff HK, Cho H et al (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:439–448. https://doi.org/10.1111/J.1474-9726.2009.00489.X

    Article  PubMed  CAS  Google Scholar 

  132. Üçeyler N, Kafke W, Riediger N et al (2010) Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology 74:1806–1813. https://doi.org/10.1212/WNL.0B013E3181E0F7B3

    Article  PubMed  Google Scholar 

  133. Tonello R, Lee SH, Berta T (2019) Monoclonal antibody targeting the matrix metalloproteinase 9 prevents and reverses paclitaxel-induced peripheral neuropathy in mice. J Pain 20:515–527. https://doi.org/10.1016/J.JPAIN.2018.11.003

    Article  PubMed  CAS  Google Scholar 

  134. Du J, Cheng N, Deng Y et al (2023) Astrocyte senescence-like response related to peripheral nerve injury-induced neuropathic pain. Cell Mol Biol Lett 28:65. https://doi.org/10.1186/S11658-023-00474-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Saleh T, Carpenter V, Tyutyunyk-Massey L et al (2020) Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-X L -BAX Interaction. Mol Oncol 14:1–16. https://doi.org/10.1002/1878-0261.12761

    Article  CAS  Google Scholar 

  136. Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658. https://doi.org/10.1111/acel.12344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG (2019) Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 193:31–49. https://doi.org/10.1016/j.pharmthera.2018.08.006

  138. Yang H, Chen C, Chen H et al (2020) Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging (Albany NY) 12:12750–12770. https://doi.org/10.18632/aging.103177

    Article  PubMed  CAS  Google Scholar 

  139. Carpenter VJ, Saleh T, Gewirtz DA (2021) Senolytics for cancer therapy: is all that glitters really gold? Cancers (Basel) 13:723. https://doi.org/10.3390/cancers13040723

    Article  PubMed  CAS  Google Scholar 

  140. Lee YR, Cho HM, Park EJ et al (2020) Metabolite profiling of rambutan (Nephelium lappaceum L.) seeds using UPLC-qTOF-MS/MS and senomorphic effects in aged human dermal fibroblasts. Nutrients 12:1430. https://doi.org/10.3390/NU12051430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Laberge R, Sun Y, Orjalo AV et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061. https://doi.org/10.1038/ncb3195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Xu C, Shen WB, Albert Reece E et al (2021) Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin. Sci Adv 7:eabf5089. https://doi.org/10.1126/SCIADV.ABF5089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Acar MB, Ayaz-Güner Ş, Gunaydin Z et al (2021) Proteomic and biological analysis of the effects of metformin senomorphics on the mesenchymal stromal cells. Front Bioeng Biotechnol 9:730813. https://doi.org/10.3389/FBIOE.2021.730813

    Article  PubMed  PubMed Central  Google Scholar 

  144. Malaquin N, Vancayseele A, Gilbert S, Antenor-Habazac L, Olivier MA, Ait Ali Brahem Z, Saad F, Delouya G, Rodier F (2020) DNA damage- but not enzalutamide-induced senescence in prostate cancer promotes senolytic Bcl-xL inhibitor sensitivity. Cells 9(7):1593. https://doi.org/10.3390/cells9071593

  145. Lim JS, Lee DY, Kim HS et al (2020) Identification of a novel senomorphic agent, avenanthramide C, via the suppression of the senescence-associated secretory phenotype. Mech Ageing Dev 192:111355. https://doi.org/10.1016/J.MAD.2020.111355

    Article  PubMed  CAS  Google Scholar 

  146. Zhang X, Dong Y, Li Wc et al (2021) Roxithromycin attenuates bleomycin-induced pulmonary fibrosis by targeting senescent cells. Acta Pharmacol Sin 42:2058–2068. https://doi.org/10.1038/S41401-021-00618-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. He Y, Yocum L, Alexander PG et al (2021) Urolithin A protects chondrocytes from mechanical overloading-induced injuries. Front Pharmacol 12:703847. https://doi.org/10.3389/FPHAR.2021.703847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Śmieszek A, Stręk Z, Kornicka K et al (2017) Antioxidant and anti-senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain-derived neurotrophic factor levels-an ex vivo study. Int J Mol Sci 18:872. https://doi.org/10.3390/IJMS18040872

    Article  PubMed  PubMed Central  Google Scholar 

  149. Moiseeva O, Deschênes-Simard X, St-Germain E et al (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12:489–498. https://doi.org/10.1111/acel.12075

    Article  PubMed  CAS  Google Scholar 

  150. Le Pelletier L, Mantecon M, Gorwood J et al (2021) Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. Elife 10:e62635. https://doi.org/10.7554/ELIFE.62635

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mao-Ying QL, Kavelaars A, Krukowski K et al (2014) The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. PLoS One 9:e100701. https://doi.org/10.1371/JOURNAL.PONE.0100701

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ludman T, Melemedjian OK (2019) Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy. Mol Pain 15:1744806919850043. https://doi.org/10.1177/1744806919850043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Alotaibi M, Al-Aqil F, Alqahtani F, Alanazi M, Nadeem A, Ahmad SF, Lapresa R, Alharbi M, Alshammari A, Alotaibi M, Saleh T, Alrowis R (2022) Alleviation of cisplatin-induced neuropathic pain, neuronal apoptosis, and systemic inflammation in mice by rapamycin. Front Aging Neurosci 14:891593. https://doi.org/10.3389/FNAGI.2022.891593

  154. Wang R, Yu Z, Sunchu B et al (2017) Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16:564–574. https://doi.org/10.1111/acel.12587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Asante CO, Wallace VC, Dickenson AH (2010) Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain. https://doi.org/10.1016/j.jpain.2010.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang X, Li X, Huang B, Ma S (2016) Blocking mammalian target of rapamycin (mTOR) improves neuropathic pain evoked by spinal cord injury. Transl Neurosci. https://doi.org/10.1515/tnsci-2016-0008

    Article  PubMed  PubMed Central  Google Scholar 

  157. Uddin MS, Al Mamun A, Rahman MA et al (2020) Exploring the promise of flavonoids to combat neuropathic pain: from molecular mechanisms to therapeutic implications. Front Neurosci 9:478. https://doi.org/10.3389/FNINS.2020.00478

    Article  Google Scholar 

  158. Schwingel TE, Klein CP, Nicoletti NF et al (2014) Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 387:837–848. https://doi.org/10.1007/S00210-014-0994-0

    Article  PubMed  CAS  Google Scholar 

  159. Zhao X, Wang C, Cui WG et al (2015) Fisetin exerts antihyperalgesic effect in a mouse model of neuropathic pain: engagement of spinal serotonergic system. Sci Rep 5:9043. https://doi.org/10.1038/SREP09043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Yousefzadeh MJ, Zhu Y, McGowan SJ et al (2018) Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36:18–28. https://doi.org/10.1016/j.ebiom.2018.09.015

    Article  PubMed  PubMed Central  Google Scholar 

  161. Nabavi SF, Khan H, D’onofrio G et al (2018) Apigenin as neuroprotective agent: of mice and men. Pharmacol Res 128:359–365. https://doi.org/10.1016/J.PHRS.2017.10.008

    Article  PubMed  Google Scholar 

  162. Lim H, Park H, Kim HP (2015) Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem Pharmacol 96:337–348. https://doi.org/10.1016/J.BCP.2015.06.013

    Article  PubMed  CAS  Google Scholar 

  163. Valsecchi AE, Franchi S, Panerai AE et al (2008) Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: anti-inflammatory and antioxidant activity. J Neurochem 107:230–240. https://doi.org/10.1111/J.1471-4159.2008.05614.X

    Article  PubMed  CAS  Google Scholar 

  164. Bimonte S, Cascella M, Schiavone V et al (2017) The roles of epigallocatechin-3-gallate in the treatment of neuropathic pain: an update on preclinical in vivo studies and future perspectives. Drug Des Devel Ther 11:2737–2742. https://doi.org/10.2147/DDDT.S142475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Lilja S, Oldenburg J, Pointner A et al (2020) Epigallocatechin gallate effectively affects senescence and anti-SASP via SIRT3 in 3T3-L1 preadipocytes in comparison with other bioactive substances. Oxid Med Cell Longev 2020:4793125. https://doi.org/10.1155/2020/4793125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Zamami Y, Niimura T, Kawashiri T et al (2022) Identification of prophylactic drugs for oxaliplatin-induced peripheral neuropathy using big data. Biomed Pharmacother 148:112744. https://doi.org/10.1016/J.BIOPHA.2022.112744

    Article  PubMed  CAS  Google Scholar 

  167. Liu S, Uppal H, Demaria M et al (2015) Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep 5:1–11. https://doi.org/10.1038/srep17895

    Article  CAS  Google Scholar 

Download references

Funding

Dr. Tareq Saleh is supported for this work by the Deanship of Scientific Research, The Hashemite University (grant no.743/51/2022).

Author information

Authors and Affiliations

Authors

Contributions

MA wrote the section on the mechanisms of CIPN. AE wrote the section on the clinical challenges associated with the treatment of CIPN. SB wrote the section on TIS. MH contributed to the writing and editing of all sections. TS wrote the section on the proposed model, designed the figure, and wrote and edited the manuscript.

Corresponding author

Correspondence to Tareq Saleh.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsalem, M., Ellaithy, A., Bloukh, S. et al. Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer 32, 85 (2024). https://doi.org/10.1007/s00520-023-08287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00520-023-08287-0

Keywords

Navigation