Skip to main content

Advertisement

Log in

Functional Coronary Artery Assessment: a Systematic Literature Review

  • review article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Abstract

Cardiovascular diseases represent the number one cause of death in the world, including the most common disorders in the heart’s health, namely coronary artery disease (CAD). CAD is mainly caused by fat accumulated in the arteries’ internal walls, creating an atherosclerotic plaque that impacts the blood flow functional behavior. Anatomical plaque characteristics are essential but not sufficient for a complete functional assessment of CAD. In fact, plaque analysis and visual inspection alone have proven insufficient to determine the lesion severity and hemodynamic repercussion. Furthermore, the fractional flow reserve (FFR) exam, which is considered the gold standard for stenosis functional impair determination, is invasive and contains several limitations. Such a panorama evidences the need for new techniques applied to image exams to improve CAD functional assessment. In this article, we perform a systematic literature review on emerging methods determining CAD significance, thus delivering a unique base for comparing these methods, qualitatively and quantitatively. Our goal is to guide further studies with evidence from the most promising methods, highlighting the benefits from both areas. We summarize benchmarks, metrics for evaluation, and challenges already faced, thus shedding light on the requirements for a valid, meaningful, and accepted technique for functional assessment evaluation. We create a base of comparison based on quantitative and qualitative indicators and highlight the most relevant geometrical metrics that correlate with lesion significance. Finally, we point out future benchmarks based on recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://www.mendeley.com.

References

  1. Adjedj J, Toth GG, De Bruyne B. Invasive measures of myocardial perfusion and ischemia. Prog Cardiovasc Dis. 2015;57(6):555–65. https://doi.org/10.1016/j.pcad.2015.03.002.

    Article  PubMed  Google Scholar 

  2. Agujetas R, González-Fernández MR, Nogales-Asensio JM, Montanero JM. Numerical analysis of the pressure drop across highly-eccentric coronary stenoses: application to the calculation of the fractional flow reserve. Biomed Eng Online. 2018;17(1):1–23. https://doi.org/10.1186/s12938-018-0503-7.

    Article  Google Scholar 

  3. Al’Aref SJ, Singh G, Choi JW, Xu Z, Maliakal G, van Rosendael AR, et al. A boosted ensemble algorithm for determination of plaque stability in high-risk patients on coronary CTA. JACC Cardiovasc Imaging. 2020;13(10):2162–73. https://doi.org/10.1016/j.jcmg.2020.03.025.

    Article  PubMed  Google Scholar 

  4. Baibhav B, Gedela M, Moulton M, Pavlides G, Pompili V, Rab T, et al. Role of invasive functional assessment in surgical revascularization of coronary artery disease. Circulation. 2018;137(16):1731–9. https://doi.org/10.1161/CIRCULATIONAHA.117.031182.

    Article  PubMed  Google Scholar 

  5. Baumann S, Hirt M, Schoepf UJ, Rutsch M, Tesche C, Renker M, et al. Correlation of machine learning computed tomography-based fractional flow reserve with instantaneous wave free ratio to detect hemodynamically significant coronary stenosis. Clin Res Cardiol. 2020;109(6):735–45. https://doi.org/10.1007/s00392-019-01562-3.

    Article  PubMed  Google Scholar 

  6. Baydoun H, Jabbar A, Nakhle A, Irimpen A, Patel T, Ward C. Revascularization of left main coronary artery. Cardiovasc Revasc Med. 2019;20(11):1014–9. https://doi.org/10.1016/j.carrev.2018.11.001.

    Article  PubMed  Google Scholar 

  7. Benenati S, De Maria GL, Scarsini R, Porto I, Banning AP. Invasive “in the cath-lab” assessment of myocardial ischemia in patients with coronary artery disease: when does the gold standard not apply? Cardiovasc Revasc Med. 2018;19(3):362–72. https://doi.org/10.1016/j.carrev.2018.01.005.

    Article  PubMed  Google Scholar 

  8. Benhar H, Idri A, Fernández-Alemán L. Data preprocessing for heart disease classification: a systematic literature review. Comput Methods Programs Biomed. 2020; https://doi.org/10.1016/j.cmpb.2020.105635.

    Article  PubMed  Google Scholar 

  9. Benton SM, Tesche C, De Cecco CN, Duguay TM, Schoepf UJ, Bayer RR. Noninvasive derivation of fractional flow reserve from coronary computed tomographic angiography: a review. J Thorac Imaging. 2018;33(2):88–96. https://doi.org/10.1097/RTI.0000000000000289.

    Article  PubMed  Google Scholar 

  10. Bhatt DL. Fractional flow reserve measurement for the physiological assessment of coronary artery stenosis severity. JAMA. 2018;320(12):1275–6. https://doi.org/10.1001/jama.2018.10683.

    Article  PubMed  Google Scholar 

  11. Carson JM, Pant S, Roobottom C, Alcock R, Javier Blanco P, Alberto Bulant C, et al. Non-invasive coronary CT angiography-derived fractional flow reserve: a benchmark study comparing the diagnostic performance of four different computational methodologies. Int J Numer Meth Biomed Engng. 2019;35(10):1–22. https://doi.org/10.1002/cnm.3235.

    Article  Google Scholar 

  12. Caruso D, Eid M, Schoepf UJ, Jin KN, Varga-Szemes A, Tesche C, et al. Dynamic CT myocardial perfusion imaging. Eur J Radiol. 2016;85(10):1893–9. https://doi.org/10.1016/j.ejrad.2016.07.017.

    Article  PubMed  Google Scholar 

  13. Cesaro A, Gragnano F, Di Girolamo D, Moscarella E, Diana V, Pariggiano I, et al. Functional assessment of coronary stenosis: an overview of available techniques. Is quantitative flow ratio a step to the future? Expert Rev Cardiovasc Ther. 2018; https://doi.org/10.1080/14779072.2018.1540303.

    Article  PubMed  Google Scholar 

  14. Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, et al. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC Cardiovasc Imaging. 2017;10(7):760–70. https://doi.org/10.1016/j.jcmg.2016.09.028.

    Article  PubMed  Google Scholar 

  15. Conte E, Sonck J, Mushtaq S, Collet C, Mizukami T, Barbato E, et al. FFRCT and CT perfusion: a review on the evaluation of functional impact of coronary artery stenosis by cardiac CT. Int J Cardiol. 2020;300:289–96. https://doi.org/10.1016/j.ijcard.2019.08.018.

    Article  PubMed  Google Scholar 

  16. Cruz-Aceves I, Hernandez-Aguirre A, Valdez SI. On the performance of nature inspired algorithms for the automatic segmentation of coronary arteries using gaussian matched filters. Appl Soft Comput. 2016;46:665–76. https://doi.org/10.1016/j.asoc.2016.01.030.

    Article  Google Scholar 

  17. Danad I, Szymonifka J, Twisk JW, Norgaard BL, Zarins CK, Knaapen P, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J. 2017;38(13):991–8. https://doi.org/10.1093/eurheartj/ehw095.

    Article  PubMed  Google Scholar 

  18. de Waard GA, Cook CM, van Royen N, Davies JE. Coronary autoregulation and assessment of stenosis severity without pharmacological vasodilation. Eur Heart J. 2018;39(46):4062–71. https://doi.org/10.1093/eurheartj/ehx669.

    Article  CAS  PubMed  Google Scholar 

  19. Dey D, Gaur S, Ovrehus KA, Slomka PJ, Betancur J, Goeller M, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol. 2018;28(6):2655–64. https://doi.org/10.1007/s00330-017-5223-z.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Di Serafino L, Scognamiglio G, Turturo M, Esposito G, Savastano R, Lanzone S, et al. FFR prediction model based on conventional quantitative coronary angiography and the amount of myocardium subtended by an intermediate coronary artery stenosis. Int J Cardiol. 2016;223:340–4. https://doi.org/10.1016/j.ijcard.2016.08.205.

    Article  PubMed  Google Scholar 

  21. Eberhard M, Nadarevic T, Cousin A, von Spiczak J, Hinzpeter R, Euler A, et al. Machine learning-based CT fractional flow reserve assessment in acute chest pain: first experience. Cardiovasc Diagn Ther. 2020;10(4):820–30. https://doi.org/10.21037/cdt-20-381.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fukuoka S, Kurita T, Takasaki A, Nakata T, Fujimoto N, Masuda J, et al. Clinical usefulness of instantaneous wave-free ratio for the evaluation of coronary artery lesion with prior myocardial infarction: a multi-center study. Int J Cardiol Heart Vasc. 2020; https://doi.org/10.1016/j.ijcha.2019.100431.

    Article  PubMed  Google Scholar 

  23. Graham MM, Faris PD, Ghali WA, Galbraith PD, Norris CM, Badry JT, et al. Validation of three myocardial jeopardy scores in a population-based cardiac catheterization cohort. Am Heart J. 2001;142(2):254–62. https://doi.org/10.1067/mhj.2001.116481.

    Article  CAS  PubMed  Google Scholar 

  24. Green M, Marom EM, Konen E, Kiryati N, Mayer A. 3‑d neural denoising for low-dose coronary ct angiography (ccta). Comput Med Imaging Graph. 2018;70:185–91. https://doi.org/10.1016/j.compmedimag.2018.07.004.

    Article  PubMed  Google Scholar 

  25. Guyton A, Hall J. Textbook of medical physiology. : Elsevier Saunders; 2006.

    Google Scholar 

  26. Hideo-Kajita A, Garcia H, Schlofmitz E, Campos C. Atualização sobre Tecnologias Fisiológicas Baseadas em Angiografia Coronariana – update on coronary angiography-based physiology technologies. : Sociedade Brasileira de Cardiologia; 2019.

    Google Scholar 

  27. Hlatky MA, Bruyne BD, Pontone G, Patel MR, Norgaard BL, Byrne RA, et al. Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography. J Am Coll Cardiol. 2015;66(21):2315–23. https://doi.org/10.1016/j.jacc.2015.09.051.

    Article  PubMed  Google Scholar 

  28. Hu W, Wu X, Dong D, Cui LB, Jiang M, Zhang J, et al. Novel radiomics features from CCTA images for the functional evaluation of significant ischaemic lesions based on the coronary fractional flow reserve score. Int J Cardiovasc Imaging. 2020;36(10):2039–50. https://doi.org/10.1007/s10554-020-01896-4.

    Article  PubMed  Google Scholar 

  29. Hwang D, Lee JM, Koo BK. Physiologic assessment of coronary artery disease: focus on fractional flow reserve. Korean J Radiol. 2016;17(3):307–20. https://doi.org/10.3348/kjr.2016.17.3.307.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ihdayhid AR, Yong A, Harper R, Rankin J, Wong C, Brown AJ, et al. A practical guide for fractional flow reserve guided revascularisation. Heart Lung Circ. 2018;27(4):406–19. https://doi.org/10.1016/j.hlc.2017.09.017.

    Article  PubMed  Google Scholar 

  31. Jafarian K, Vahdat V, Salehi S, Mobin M. Automating detection and localization of myocardial infarction using shallow and end-to-end deep neural networks. Appl Soft Comput. 2020;93:106383. https://doi.org/10.1016/j.asoc.2020.106383.

    Article  Google Scholar 

  32. Johnson NP, Gould KL, Di Carli MF, Taqueti VR. Invasive FFR and noninvasive CFR in the evaluation of ischemia: what is the future? J Am Coll Cardiol. 2016;67(23):2772–88. https://doi.org/10.1016/j.jacc.2016.03.584.

    Article  PubMed  Google Scholar 

  33. Kaplan Berkaya S, Ak Sivrikoz I, Gunal S. Classification models for SPECT myocardial perfusion imaging. Comput Biol Med. 2020;123:103893. https://doi.org/10.1016/j.compbiomed.2020.103893.

    Article  PubMed  Google Scholar 

  34. Kawasaki T, Kidoh M, Kido T, Sueta D, Fujimoto S, Kumamaru KK, et al. Evaluation of significant coronary artery disease based on CT fractional flow reserve and plaque characteristics using random forest analysis in machine learning. Acad Radiol. 2020; https://doi.org/10.1016/j.acra.2019.12.013.

    Article  PubMed  Google Scholar 

  35. Kim HY, Lim HS, Doh JH, Nam CW, et al. Physiological severity of coronary artery stenosis depends on the amount of myocardial mass subtended by the coronary artery. JACC Cardiovasc Interv. 2016;9(15):1548–60. https://doi.org/10.1016/j.jcin.2016.04.008.

    Article  PubMed  Google Scholar 

  36. Ko SM, Hwang HK, Kim SM, Cho IH. Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging. Int J Cardiovasc Imaging. 2015;31:1–21. https://doi.org/10.1007/s10554-015-0645-7.

    Article  PubMed  Google Scholar 

  37. Koo HJ, Yang DH, Kim YH, Kang JW, Kang SJ, Kweon J, et al. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int J Cardiovasc Imaging. 2016;32(1):1–19. https://doi.org/10.1007/s10554-015-0825-5.

    Article  PubMed  Google Scholar 

  38. Kotecha T, Martinez-Naharro A, Boldrini M, Knight D, Hawkins P, Kalra S, et al. Automated pixel-wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction: validation against invasive coronary physiology. JACC Cardiovasc Imaging. 2019;12(10):1958–69. https://doi.org/10.1016/j.jcmg.2018.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kwan AC, McElhinney PA, Tamarappoo BK, Cadet S, Hurtado C, Miller RJ, et al. Prediction of revascularization by coronary CT angiography using a machine learning ischemia risk score. Eur Radiol. 2020; https://doi.org/10.1007/s00330-020-07142-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee JG, Ko J, Hae H, Kang SJ, Kang DY, Lee PH, et al. Intravascular ultrasound-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions. Atherosclerosis. 2020;292:171–7. https://doi.org/10.1016/j.atherosclerosis.2019.10.022.

    Article  CAS  PubMed  Google Scholar 

  41. Leone AM, Lassandro Pepe F, Arioti M, Crea F. Contrast fractional flow reserve (cFFR): a pragmatic response to the call for simplification of invasive functional assessment. Int J Cardiol. 2018;268:45–50. https://doi.org/10.1016/j.ijcard.2018.04.048.

    Article  PubMed  Google Scholar 

  42. Li S, Chen C, Qin L, Gu S, Zhang H, Yan F, et al. The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFRML) values. Int J Cardiovasc Imaging. 2020;36(6):1177–85. https://doi.org/10.1007/s10554-020-01807-7.

    Article  PubMed  Google Scholar 

  43. Li Z, Zhang Y, Gong H, Li W, Tang X. Automatic coronary artery segmentation based on multi-domains remapping and quantile regression in angiographies. Comput Med Imaging Graph. 2016;54:55–66. https://doi.org/10.1016/j.compmedimag.2016.08.006.

    Article  PubMed  Google Scholar 

  44. Loewe C. Hemodynamically significant coronary stenosis: detection with CT myocardial perfusion imaging versus machine learning coronary CT fractional flow reserve. Radiology. 2019;293(2):315–6. https://doi.org/10.1148/radiol.2019191911.

    Article  PubMed  Google Scholar 

  45. Loncaric F, Camara O, Piella G, Bijnens B. Integration of artificial intelligence into clinical patient management: focus on cardiac imaging. Rev Esp Cardiol. 2020; https://doi.org/10.1016/j.rec.2020.07.003.

    Article  PubMed  Google Scholar 

  46. Martins JL, Afreixo V, Santos J, Gonçalves L. Fractional flow reserve-guided strategy in acute coronary syndrome. A systematic review and meta-analysis. Arq Bras Cardiol. 2018;111(4):542–50. https://doi.org/10.5935/abc.20180170.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Michail M, Dehbi HM, Nerlekar N, Davies JE, Sharp AS, Talwar S, et al. Application of the DILEMMA score to improve lesion selection for invasive physiological assessment. Catheter Cardiovasc Interv. 2019;94(3):E96–E103. https://doi.org/10.1002/ccd.28054.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J, Nørgaard BL, et al. Noninvasive fractional flow reserve derived from coronary CT angiography clinical data and scientific principles. JACC Cardiovasc Imaging. 2015;8(10):1209–22. https://doi.org/10.1016/j.jcmg.2015.08.006.

    Article  PubMed  Google Scholar 

  49. Moertl D, Binder T, Haddad M, Sochor H, Probst P. Comparison of quantitative coronary angiography with visual. 1995. pp. 145–8.

    Google Scholar 

  50. Nous FM, Budde RP, Lubbers MM, Yamasaki Y, Kardys I, Bruning TA, et al. Impact of machine-learning CT-derived fractional flow reserve for the diagnosis and management of coronary artery disease in the randomized CRESCENT trials. Eur Radiol. 2020;30(7):3692–701. https://doi.org/10.1007/s00330-020-06778-w.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nudi A, Biondi-Zoccai G, Versaci F, Nudi F. Promises and pitfalls of relying on angiography-derived indexes to identify myocardial ischemia: a tale of Romulus and Remus. J Nucl Cardiol. 2020; https://doi.org/10.1007/s12350-020-02313-y.

    Article  PubMed  Google Scholar 

  52. Opincariu D, Benedek T, Chitu M, Rat N, Benedek I. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging. 2020; https://doi.org/10.1007/s10554-020-01926-1.

    Article  PubMed  Google Scholar 

  53. Pang CL, Alcock R, Pilkington N, Reis T, Roobottom C. Determining the haemodynamic significance of arterial stenosis: the relationship between CT angiography, computational fluid dynamics, and non-invasive fractional flow reserve. Clin Radiol. 2016;71(8):750–7. https://doi.org/10.1016/j.crad.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  54. Pang K, Ai D, Fang H, Fan J, Song H, Yang J. Stenosis-detnet: sequence consistency-based stenosis detection for x‑ray coronary angiography. Comput Med Imaging Graph. 2021;89:101900. https://doi.org/10.1016/j.compmedimag.2021.101900.

    Article  PubMed  Google Scholar 

  55. Park JY, Lerman A, Herrmann J. Use of fractional flow reserve in patients with coronary artery disease: the right choice for the right outcome. Trends Cardiovasc Med. 2017;27(2):106–20. https://doi.org/10.1016/j.tcm.2016.06.011.

    Article  PubMed  Google Scholar 

  56. Petticrew M, Roberts H. Systematic reviews in the social sciences: a practical guide. : John Wiley & Sons; 2008.

    Google Scholar 

  57. Pollock JD, Murray I, Bordes S, Makaryus AN. Physiology, cardiovascular hemodynamics. 2020.

    Google Scholar 

  58. Pontone G, Baggiano A, Andreini D, Guaricci A, Guglielmo M, Muscogiuri G, et al. Diagnostic accuracy of simultaneous evaluation of coronary arteries and myocardial perfusion with single stress cardiac computed tomography acquisition compared to invasive coronary angiography plus invasive fractional flow reserve. Int J Cardiol. 2018;273:263–8. https://doi.org/10.1016/j.ijcard.2018.09.065.

    Article  PubMed  Google Scholar 

  59. Pyxaras SA, Wijns W, Reiber JH, Bax JJ. Invasive assessment of coronary artery disease. J Nucl Cardiol. 2018;25(3):860–71. https://doi.org/10.1007/s12350-017-1050-5.

    Article  PubMed  Google Scholar 

  60. Qureshi AM, Agrawal H. Catheter-based anatomic and functional assessment of coronary arteries in anomalous aortic origin of a coronary artery, myocardial bridges and Kawasaki disease. Congenit Heart Dis. 2017;12(5):615–8. https://doi.org/10.1111/chd.12500.

    Article  PubMed  Google Scholar 

  61. Ramasamy A, Chen Y, Zanchin T, Jones DA, Rathod K, Jin C, et al. Optical coherence tomography enables more accurate detection of functionally significant intermediate non-left main coronary artery stenoses than intravascular ultrasound: a meta-analysis of 6919 patients and 7537 lesions. Int J Cardiol. 2020;301:226–34. https://doi.org/10.1016/j.ijcard.2019.09.067.

    Article  PubMed  Google Scholar 

  62. Shao YE, Hou CD, Chiu CC. Hybrid intelligent modeling schemes for heart disease classification. Appl Soft Comput. 2014;14:47–52. https://doi.org/10.1016/j.asoc.2013.09.020.

    Article  Google Scholar 

  63. Siogkas PK, Papafaklis MI, Gogas BD, Samady H, Michalis LK, Fotiadis DI. Computational estimation of the severity of coronary lesions with intravascular ultrasound images: a pilot study. Proceedings of the annual international conference of the IEEE engineering in medicine and biology society. 2016. pp. 2664–7. https://doi.org/10.1109/EMBC.2016.7591278.

    Book  Google Scholar 

  64. Siogkas PK, Rigas G, Exarchos TP, Sakellarios AI, Papafaklis MI, Pelosi G, Parodi O, Michalis LK, Fotiadis DI. Computational estimation of the hemodynamic significance of coronary stenoses in arterial branches deriving from CCTA: a proof-of-concept study. Proceedings of the annual international conference of the IEEE engineering in medicine and biology society. 2017. pp. 1348–51. https://doi.org/10.1109/EMBC.2017.8037082.

    Book  Google Scholar 

  65. Stapić Z, López EG, Cabot AG, de Marcos Ortega L, Strahonja V. Performing systematic literature review in software engineering. CECIIS 2012-23rd International Conference. 2012.

    Google Scholar 

  66. Stegehuis VE, Wijntjens GW, Piek JJ, van de Hoef TP. Fractional flow reserve or coronary flow reserve for the assessment of myocardial perfusion: implications of FFR as an imperfect reference standard for myocardial Ischemia. Curr Cardiol Rep. 2018; https://doi.org/10.1007/s11886-018-1017-4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Takahashi K, Kogame N, Tomaniak M, Chichareon P, Chang CC, Modolo R, et al. TCT-326 diagnostic performance of angiography-based quantitative flow ratio with respect to fractional flow reserve derived from computed tomography angiography: insight from the SYNTAX III trial. J Am Coll Cardiol. 2019;74(13):B324. https://doi.org/10.1016/j.jacc.2019.08.406.

    Article  Google Scholar 

  68. Tanigaki T, Emori H, Kawase Y, Kubo T, Omori H, Shiono Y, et al. QFR versus FFR derived from computed tomography for functional assessment of coronary artery stenosis. JACC Cardiovasc Interv. 2019;12(20):2050–9. https://doi.org/10.1016/j.jcin.2019.06.043.

    Article  PubMed  Google Scholar 

  69. Tebaldi M, Biscaglia S, Fineschi M, Musumeci G, Marchese A, Leone AM, et al. Evolving routine standards in invasive hemodynamic assessment of coronary stenosis: the nationwide Italian SICI-GISE cross-sectional ERIS study. JACC Cardiovasc Interv. 2018;11(15):1482–91. https://doi.org/10.1016/j.jcin.2018.04.037.

    Article  PubMed  Google Scholar 

  70. Ties D, van Dijk R, Pundziute G, Lipsic E, Vonck TE, van den Heuvel AF, et al. Computational quantitative flow ratio to assess functional severity of coronary artery stenosis. Int J Cardiol. 2018;271:36–41. https://doi.org/10.1016/j.ijcard.2018.05.002.

    Article  PubMed  Google Scholar 

  71. Tran DM, Nguyen MT, Lee SW. Machine learning based evaluation of functional index for coronary lesion severity. ACM international conference proceeding series. 2018. pp. 1–4. https://doi.org/10.1145/3184066.3184079.

    Book  Google Scholar 

  72. Tsompou PI, Sakellarios AI, Siogkas PK, Andrikos IO, Kigka VI, Lemos PA, Michalis LK, Fotiadis DI. Comparison of 3D reconstruction methods based on different cardiovascular imaging: a study of multimodality reconstruction method. Proceedings of the annual international conference of the IEEE engineering in medicine and biology society. 2018. pp. 899–902. https://doi.org/10.1109/EMBC.2018.8512322.

    Book  Google Scholar 

  73. Uus A, Liatsis P, Jawaid MM, Rajani R, Benderskaya E. Assessment of stenosis introduced flow resistance in CCTA-reconstructed coronary arteries. 22nd International Conference on Systems, Signals and Image Processing. 2015pp. pp. 313–20. https://doi.org/10.1109/IWSSIP.2015.7314238.

    Book  Google Scholar 

  74. Wang X, Peng C, Liu X, Pan Z. Functional assessment of stenotic coronary artery in 3d geometric reconstruction from fusion of intravascular ultrasound and X‑ray angiography. IEEE Access. 2018;6:53330–41. https://doi.org/10.1109/ACCESS.2018.2870950.

    Article  Google Scholar 

  75. Weiss K, Khoshgoftaar T, Wang D. A survey of transfer learning. J Big Data. 2006; https://doi.org/10.1186/s40537-016-0043-6.

    Article  Google Scholar 

  76. Westra J, Andersen B, Campo G, Matsuo H, Koltowski L. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the favor ii europe-japan study. J Am Heart Assoc. 2018; https://doi.org/10.1161/JAHA.118.009603.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol. 2019;73(3):291–301. https://doi.org/10.1016/j.jacc.2018.10.066.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82. https://doi.org/10.1109/4235.585893.

    Article  Google Scholar 

  79. World Health Organization. Cardiovascular diseases. 2017. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-. Accessed 17 Aug 2020.

  80. Xaplanteris P, Fournier S, Pijls NH, et al. Five-year outcomes with pci guided by fractional flow reserve. N Engl J Med. 2018;379(3):250–9. https://doi.org/10.1056/NEJMoa1803538.

    Article  PubMed  Google Scholar 

  81. Yazaki K, Otsuka M, Kataoka S, Kahata M, Kumagai A, Inoue K, et al. Applicability of 3‑dimensional quantitative coronary angiography-derived computed fractional flow reserve for intermediate coronary stenosis. Circ J. 2017;81(7):988–92. https://doi.org/10.1253/circj.CJ-16-1261.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (Finance Code 001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (grant 309537/2020-7).

Author information

Authors and Affiliations

Authors

Contributions

Samuel A. Freitas: Conceptualization, Methodology, Investigation, Formal analysis, Visualization, Writing – Original Draft. Débora Nienow: Resources, Writing – Reviewing and Editing. Cristiano A. da Costa: Methodology, Writing – Reviewing and Editing, Supervision. Gabriel de O. Ramos: Conceptualization, Methodology, Writing – Reviewing and Editing, Supervision.

Corresponding author

Correspondence to Gabriel de O. Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Code availability

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, S.A., Nienow, D., da Costa, C.A. et al. Functional Coronary Artery Assessment: a Systematic Literature Review. Wien Klin Wochenschr 134, 302–318 (2022). https://doi.org/10.1007/s00508-021-01970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-021-01970-4

Keywords

Navigation