Skip to main content
Log in

A systematic review of imaging anatomy in predicting functional significance of coronary stenoses determined by fractional flow reserve

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Fractional flow reserve (FFR) is the current gold standard to assess the physiological significance of coronary stenoses. With the development of coronary imaging techniques, several anatomic parameters have been investigated in vivo and their associations with FFR have been studied. The aim of this review is to summarize the accuracy of anatomic parameters derived by the present coronary imaging techniques including invasive coronary angiography, coronary computed tomography angiography, intravascular ultrasound and optical coherence tomography, in predicting a significant FFR. The impact of patient characteristics, lesion locations, variability of FFR and imaging resolution on the predictive ability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tu S, Barbato E, Koszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W et al (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Intervention 7(7):768–777.

  2. Tu S, Echavarria-Pinto M, Birgelen CV, Holm NR, Pyxaras SA, Kumsars I, Ming KL, Valkenburg I, Toth GG, Li Y (2015) Fractional flow reserve and coronary bifurcation anatomy : a novel quantitative model to assess and report the stenosisseverity of bifurcation lesions. Jacc Cardiovasc Interventions 8(4):564–574.

  3. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. New England. J Med 360(3):213–224

    CAS  Google Scholar 

  4. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Mobius-Winkler S, Rioufol G, Witt N et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001

    Article  PubMed  Google Scholar 

  5. Fearon WF, Shilane D, Pijls NH, Boothroyd DB, Tonino PA, Barbato E, Juni P, De Bruyne B, Hlatky MA (2013) Fractional Flow Reserve Versus Angiography for Multivessel Evaluation I: Cost-effectiveness of percutaneous coronary intervention in patients with stable coronary artery disease and abnormal fractional flow reserve. Circulation 128(12):1335–1340

    Article  PubMed  Google Scholar 

  6. Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, Bar F, Hoorntje J, Koolen J, Wijns W (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 49(21):2105–2111

    Article  PubMed  Google Scholar 

  7. Reiber JH, Tu S, Tuinenburg JC, Koning G, Janssen JP, Dijkstra J: QCA, IVUS and OCT in interventional cardiology in 2011. Cardiovasc Diagn Ther 1(1):57–70.

  8. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, Camici PG, Cerqueira MD, Chow BJW, Carli MFD (2013) Anatomic Versus Physiologic Assessment of Coronary Artery Disease : Role of Coronary Flow Reserve, Fractional Flow Reserve, and Positron Emission Tomography Imaging in Revascularization Decision-Making. J Am Coll Cardiol 62(18):1639–1653

    Article  PubMed  Google Scholar 

  9. Doh JH, Koo BK, Nam CW, Kim JH, Min JK, Nakazato R, Silalahi T, Prawira H, Choi H, Lee SY et al (2014) Diagnostic value of coronary CT angiography in comparison with invasive coronary angiography and intravascular ultrasound in patients with intermediate coronary artery stenosis: results from the prospective multicentre FIGURE-OUT (Functional Imaging criteria for GUiding REview of invasive coronary angiOgraphy, intravascular Ultrasound, and coronary computed Tomographic angiography) study. Eur Heart J Cardiovasc Imaging 15(8):870–877

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reith S, Battermann S, Jaskolka A, Lehmacher W, Hoffmann R, Marx N, Burgmaier M (2013) Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes. Heart 99(10):700–707

    Article  PubMed  Google Scholar 

  11. Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F, Di Serafino L, Muller O, Van Mieghem C, Wyffels E et al (2014) Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J 35(40):2831–2838

    Article  PubMed  Google Scholar 

  12. Chung WY, Choi BJ, Lim SH, Matsuo Y, Lennon RJ, Gulati R, Sandhu GS, Holmes DR Jr, Rihal CS, Lerman A (2015) Three dimensional quantitative coronary angiography can detect reliably ischemic coronary lesions based on fractional flow reserve. J Korean Med Sci 30(6):716–724

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arashi H, Yamaguchi J, Nakazawa M, Otsuki H, Haruki S, Nakao M, Kamishima K, Jujo K, Minami Y, Takagi A et al (2016) Lesion characteristics of coronary arteries associated with a mismatch between angiographic severity of stenosis and fractional flow reserve. Cardiovasc Intervention Ther.

  14. Pyxaras SA, Tu S, Barbato E, Barbati G, Di Serafino L, De Vroey F, Toth G, Mangiacapra F, Sinagra G, De Bruyne B et al (2013) Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: comparison with fractional flow reserve. Am Heart J 166(6):1010–1018 e1011.

    Google Scholar 

  15. Yong AS, Ng AC, Brieger D, Lowe HC, Ng MK, Kritharides L (2011) Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J 32(3):345–353

    Article  PubMed  Google Scholar 

  16. Saad M, Toelg R, Khattab AA, Kassner G, Abdel-Wahab M, Richardt G (2009) Determination of haemodynamic significance of intermediate coronary lesions using three-dimensional coronary reconstruction. EuroIntervention 5(5):573–579

    Article  PubMed  Google Scholar 

  17. Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, Ragosta M (2002) Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol 90(3):210–215

    Article  PubMed  Google Scholar 

  18. Tu S, Echavarria-Pinto M, von Birgelen C, Holm NR, Pyxaras SA, Kumsars I, Lam MK, Valkenburg I, Toth GG, Li Y et al (2015) Fractional flow reserve and coronary bifurcation anatomy: a novel quantitative model to assess and report the stenosis severity of bifurcation lesions. JACC Cardiovasc Interv 8(4):564–574

    Article  PubMed  Google Scholar 

  19. Park SJ, Kang SJ, Ahn JM, Shim EB, Kim YT, Yun SC, Song H, Lee JY, Kim WJ, Park DW et al (2012) Visual-functional mismatch between coronary angiography and fractional flow reserve. JACC Cardiovasc Interv 5(10):1029–1036

    Article  PubMed  Google Scholar 

  20. Zhang YJ, Zhu H, Shi SY, Muramatsu T, Pan DR, Ye F, Zhang JJ, Tian NL, Bourantas CV, Chen SL (2016) Comparison between two-dimensional and three-dimensional quantitative coronary angiography for the prediction of functional severity in true bifurcation lesions: Insights from the randomized DK-CRUSH II, III, and IV trials. Catheter Cardiovasc Interv 87(Suppl 1):589–598

    Article  PubMed  Google Scholar 

  21. Tu S (2016) Diagnostic accuracy of a fast computational approach to derive FFR from coronary X-ray angiography: results from the international multicenter FAVOR (Functional Assessment by Various Flow Reconstructions) pilot study. EuroPCR. 19 May 2016. Paris, France

  22. Wong DT, Narayan O, Ko BS, Leong DP, Seneviratne S, Potter EL, Cameron JD, Meredith IT, Malaiapan Y (2015) A novel coronary angiography index (DILEMMA score) for prediction of functionally significant coronary artery stenoses assessed by fractional flow reserve: A novel coronary angiography index. Am Heart J 169(4):564–571 e564.

    Article  Google Scholar 

  23. Hoffmann U, Bamberg F, Chae CU, Nichols JH, Rogers IS, Seneviratne SK, Truong QA, Cury RC, Abbara S, Shapiro MD et al (2009) Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 53(18):1642–1650

    Article  PubMed  PubMed Central  Google Scholar 

  24. Opolski MP, Kepka C, Achenbach S, Pregowski J, Kruk M, Staruch AD, Kadziela J, Ruzyllo W, Witkowski A (2014) Advanced computed tomographic anatomical and morphometric plaque analysis for prediction of fractional flow reserve in intermediate coronary lesions. Eur J Radiol 83(1):135–141

    Article  PubMed  Google Scholar 

  25. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52(21):1724–1732

    Article  PubMed  Google Scholar 

  26. Hollander JE, Chang AM, Shofer FS, McCusker CM, Baxt WG, Litt HI (2009) Coronary computed tomographic angiography for rapid discharge of low-risk patients with potential acute coronary syndromes. Ann Emerg Med 53(3):295–304

    Article  PubMed  Google Scholar 

  27. Budoff MJ, Nakazato R, Mancini GB, Gransar H, Leipsic J, Berman DS, Min JK (2016) CT angiography for the prediction of hemodynamic significance in intermediate and severe lesions: head-to-head comparison with quantitative coronary angiography using fractional flow reserve as the reference standard. JACC Cardiovasc Imaging 9(5):559–564

    Article  PubMed  Google Scholar 

  28. Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, Boersma E, Regar E, van Geuns RJ, de Jaegere PJ et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52(8):636–643

    Article  PubMed  Google Scholar 

  29. Nakazato R, Shalev A, Doh JH, Koo BK, Gransar H, Gomez MJ, Leipsic J, Park HB, Berman DS, Min JK (2013) Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J Am Coll Cardiol 62(5):460–467

    Article  PubMed  Google Scholar 

  30. Wang R, Baumann S, Schoepf UJ, Meinel FG, Rier JD, Morris JZ, Mollmann H, Hamm CW, Steinberg DH, Renker M (2015) Comparison of quantitative stenosis characteristics at routine coronary computed tomography angiography with invasive fractional flow reserve for assessing lesion-specific ischemia. J Cardiovasc Comput Tomogr 9(6):546–552

    Article  PubMed  Google Scholar 

  31. Tesche C, De Cecco CN, Caruso D, Baumann S, Renker M, Mangold S, Dyer KT, Varga-Szemes A, Baquet M, Jochheim D et al (2016) Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr 10(3):199–206

    Article  PubMed  Google Scholar 

  32. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997

    Article  PubMed  Google Scholar 

  33. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. Jama 308(12):1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kristensen TS, Engstrom T, Kelbaek H, von der Recke P, Nielsen MB, Kofoed KF (2010) Correlation between coronary computed tomographic angiography and fractional flow reserve. Int J Cardiol 144(2):200–205

    Article  PubMed  Google Scholar 

  35. Kruk M, Wardziak L, Demkow M, Pleban W, Pregowski J, Dzielinska Z, Witulski M, Witkowski A, Ruzyllo W, Kepka C (2016) Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging 9(6):690–699

    Article  PubMed  Google Scholar 

  36. Gaur S, Ovrehus KA, Dey D, Leipsic J, Botker HE, Jensen JM, Narula J, Ahmadi A, Achenbach S, Ko BS et al (2016) Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J 37(15):1220–1227

    Article  PubMed  PubMed Central  Google Scholar 

  37. Diaz-Zamudio M, Dey D, Schuhbaeck A, Nakazato R, Gransar H, Slomka PJ, Narula J, Berman DS, Achenbach S, Min JK et al (2015) Automated quantitative plaque burden from coronary CT angiography noninvasively predicts hemodynamic significance by using fractional flow reserve in intermediate coronary lesions. Radiology 276(2):408–415

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stuijfzand WJ, Danad I, Raijmakers PG, Marcu CB, Heymans MW, van Kuijk CC, van Rossum AC, Nieman K, Min JK, Leipsic J et al (2014) Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis. JACC Cardiovasc Imaging 7(4):374–386

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang R, Renker M, Schoepf UJ, Wichmann JL, Fuller SR, Rier JD, Bayer RR 2nd, Steinberg DH, De Cecco CN, Baumann S (2015) Diagnostic value of quantitative stenosis predictors with coronary CT angiography compared to invasive fractional flow reserve. Eur J Radiol 84(8):1509–1515

    Article  PubMed  Google Scholar 

  40. Wong DT, Ko BS, Cameron JD, Nerlekar N, Leung MC, Malaiapan Y, Crossett M, Leong DP, Worthley SG, Troupis J et al (2013) Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 61(12):1271–1279

    Article  PubMed  Google Scholar 

  41. Kang SJ, Lee JY, Ahn JM, Mintz GS, Kim WJ, Park DW, Yun SC, Lee SW, Kim YH, Lee CW et al (2011) Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv 4(1):65–71

    Article  PubMed  Google Scholar 

  42. Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H (1999) Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100(3):250–255

    Article  CAS  PubMed  Google Scholar 

  43. Koo BK, Yang HM, Doh JH, Choe H, Lee SY, Yoon CH, Cho YK, Nam CW, Hur SH, Lim HS et al (2011) Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv 4(7):803–811

    Article  PubMed  Google Scholar 

  44. Kang SJ, Lee JY, Ahn JM, Song HG, Kim WJ, Park DW, Yun SC, Lee SW, Kim YH, Mintz GS et al (2011) Intravascular ultrasound-derived predictors for fractional flow reserve in intermediate left main disease. JACC Cardiovasc Interv 4(11):1168–1174

    Article  PubMed  Google Scholar 

  45. Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA (2004) Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 110(18):2831–2836

    Article  PubMed  Google Scholar 

  46. Yang HM, Tahk SJ, Lim HS, Yoon MH, Choi SY, Choi BJ, Jin XJ, Hwang GS, Park JS, Shin JH (2014) Relationship between intravascular ultrasound parameters and fractional flow reserve in intermediate coronary artery stenosis of left anterior descending artery: intravascular ultrasound volumetric analysis. Catheter Cardiovasc 83(3):386–394.

  47. Lee CH, Tai BC, Soon CY, Low AF, Poh KK, Yeo TC, Lim GH, Yip J, Omar AR, Teo SG et al (2010) New set of intravascular ultrasound-derived anatomic criteria for defining functionally significant stenoses in small coronary arteries (results from Intravascular Ultrasound Diagnostic Evaluation of Atherosclerosis in Singapore [IDEAS] study). Am J Cardiol 105(10):1378–1384

    Article  PubMed  Google Scholar 

  48. Takayama T, Hodgson JM (2001) Prediction of the physiologic severity of coronary lesions using 3D IVUS: validation by direct coronary pressure measurements. Catheter Cardiovasc Interv 53(1):48–55

    Article  CAS  PubMed  Google Scholar 

  49. Lopez-Palop R, Carrillo P, Agudo P, Frutos A, Cordero A, Lopez-Aranda MA, Ramos D (2013) Correlation between intracoronary ultrasound and fractional flow reserve in long coronary lesions. A three-dimensional intracoronary ultrasound study. Rev Esp Cardiol 66(9):707–714

    Article  PubMed  Google Scholar 

  50. Park SJ, Ahn JM, Kang SJ, Yoon SH, Koo BK, Lee JY, Kim WJ, Park DW, Lee SW, Kim YH et al (2014) Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv 7(8):868–874

    Article  PubMed  Google Scholar 

  51. Han JK, Koo BK, Park KW, Ben-Dor I, Waksman R, Pichard A, Nam CW, Doh JH, Murata N, Tanaka N et al (2014) Optimal intravascular ultrasound criteria for defining the functional significance of intermediate coronary stenosis: an international multicenter study. Cardiology 127(4):256–262

    Article  PubMed  Google Scholar 

  52. Kang SJ, Ahn JM, Song H, Kim WJ, Lee JY, Park DW, Yun SC, Lee SW, Kim YH, Lee CW et al (2012) Usefulness of minimal luminal coronary area determined by intravascular ultrasound to predict functional significance in stable and unstable angina pectoris. Am J Cardiol 109(7):947–953

    Article  PubMed  Google Scholar 

  53. Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez-Quevedo P, Banuelos C, Fernandez-Ortiz A, Garcia E, Hernandez-Antolin R et al (2012) Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol 59(12):1080–1089

    Article  PubMed  Google Scholar 

  54. Kang SJ, Kweon J, Yang DH, Lee JG, Jung J, Kim N, Mintz GS, Kang JW, Lim TH, Park SW et al (2016) Mathematically derived criteria for detecting functionally significant stenoses using coronary computed tomographic angiography-based myocardial segmentation and intravascular ultrasound-measured minimal lumen area. Am J Cardiol 118(2):170–176

    Article  PubMed  Google Scholar 

  55. Waksman R, Legutko J, Singh J, Orlando Q, Marso S, Schloss T, Tugaoen J, DeVries J, Palmer N, Haude M et al (2013) FIRST: fractional flow reserve and intravascular ultrasound relationship study. J Am Coll Cardiol 61(9):917–923

    Article  PubMed  Google Scholar 

  56. Ben-Dor I, Torguson R, Deksissa T, Bui AB, Xue Z, Satler LF, Pichard AD, Waksman R (2012) Intravascular ultrasound lumen area parameters for assessment of physiological ischemia by fractional flow reserve in intermediate coronary artery stenosis. Cardiovasc Revascularization Med 13(3):177–182.

  57. Naganuma T, Latib A, Costopoulos C, Takagi K, Naim C, Sato K, Miyazaki T, Kawaguchi M, Panoulas VF, Basavarajaiah S et al (2014) The role of intravascular ultrasound and quantitative angiography in the functional assessment of intermediate coronary lesions: correlation with fractional flow reserve. Cardiovasc Revascularization Med 15(1):3–7.

  58. Briguori C, Anzuini A, Airoldi F, Gimelli G, Nishida T, Adamian M, Corvaja N, Di Mario C, Colombo A (2001) Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol 87(2):136–141

    Article  CAS  PubMed  Google Scholar 

  59. Voros S, Rinehart S, Vazquez-Figueroa JG, Kalynych A, Karmpaliotis D, Qian Z, Joshi PH, Anderson H, Murrieta L, Wilmer C et al (2014) Prospective, head-to-head comparison of quantitative coronary angiography, quantitative computed tomography angiography, and intravascular ultrasound for the prediction of hemodynamic significance in intermediate and severe lesions, using fractional flow reserve as reference standard (from the ATLANTA I and II Study). Am J Cardiol 113(1):23–29

    Article  PubMed  Google Scholar 

  60. Chung JH, Ann SH, Singh GB, Nam CW, Doh JH, Kim HI, Koo BK, Shin ES (2016) Segmental assessments of coronary plaque morphology and composition by virtual histology intravascular ultrasound and fractional flow reserve. Int J Cardiovasc Imaging 32(3):373–380

    Article  PubMed  Google Scholar 

  61. Kang SJ, Yang DH, Kweon J, Kim YH, Lee JG, Jung J, Kim N, Mintz GS, Kang JW, Lim TH et al (2016) Better diagnosis of functionally significant intermediate sized narrowings using intravascular ultrasound-minimal lumen area and coronary computed tomographic angiography-based myocardial segmentation. Am J Cardiol 117(8):1282–1288

    Article  PubMed  Google Scholar 

  62. Ben-Dor I, Torguson R, Gaglia MA Jr, Gonzalez MA, Maluenda G, Bui AB, Xue Z, Satler LF, Suddath WO, Lindsay J et al (2011) Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. EuroIntervention 7(2):225–233

    Article  PubMed  Google Scholar 

  63. Chen SL, Xu B, Chen JB, Xu T, Ye F, Zhang JJ, Kwan TW, Tian NL, Liu ZZ (2013) Lin S: Diagnostic accuracy of quantitative angiographic and intravascular ultrasound parameters predicting the functional significance of single de novo lesions. Int J Cardiol 68(2):1364–1369

    Article  Google Scholar 

  64. Costa MA, Sabate M, Staico R, Alfonso F, Seixas AC, Albertal M, Crossman A, Angiolillo DJ, Zenni M, Sousa JE et al (2007) Anatomical and physiologic assessments in patients with small coronary artery disease: final results of the physiologic and anatomical evaluation prior to and after stent implantation in small coronary vessels (PHANTOM) trial. Am Heart J 153(2):296 e291–297.

    Google Scholar 

  65. Tanaka S, Noda T, Segawa T, Iwama M, Minagawa T, Watanabe S, Minatoguchi S (2010) Relation between functional stenosis and tissue characterization of intermediate coronary plaques in patients with stable coronary heart disease. J Cardiol 55(3):296–302

    Article  PubMed  Google Scholar 

  66. Huseyinova G, Aslanger E, Cakir O, Atici A, Panc C, Demirkiran A, Surmen S, Sarikaya R, Erdogan O, Golcuk E et al (2015) Potential contribution of virtual histology plaque composition to hemodynamic-morphologic dissociation in patients with non-ST elevation acute coronary syndrome. Int J Cardiol 187:33–38

    Article  PubMed  Google Scholar 

  67. Reith S, Battermann S, Hellmich M, Marx N, Burgmaier M (2015) Correlation between OCT-derived intrastent dimensions and fractional flow reserve measurements after coronary stent implantation and impact on clinical outcome. J Invasive Cardiol 27(5):222–228

    PubMed  Google Scholar 

  68. Lee SY, Shin DH, Shehata I, Kim JS, Kim BK, Ko YG, Choi D, Jang Y, Hong MK (2016) Association between fractional flow reserve and coronary plaque characteristics assessed by optical coherence tomography. J Cardiol 68(4):342–345

    Article  PubMed  Google Scholar 

  69. Kobayashi Y, Johnson NP, Berry C, Bruyne BD, Gould KL, Jeremias A, Oldroyd KG, Pijls NHJ, Fearon WF (2016) The influence of lesion location on the diagnostic accuracy of adenosine-free coronary pressure wire measurements. Jacc Cardiovasc Interv 9(23):2390.

  70. Petraco R, Sen S, Nijjer S, Echavarria-Pinto M, Escaned J, Francis DP, Davies JE (2013) Fractional flow reserve-guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions. Jacc Cardiovasc Interv 6(3):222.

  71. Tu S, Xu L, Ligthart J, Xu B, Witberg K, Sun Z, Koning G, Reiber JH, Regar E (2012) In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography. Int J Cardiovasc Imaging 28(6):1315–1327

    Article  PubMed  PubMed Central  Google Scholar 

  72. Reith S, Battermann S, Hellmich M, Marx N, Burgmaier M (2015) Correlation between optical coherence tomography-derived intraluminal parameters and fractional flow reserve measurements in intermediate grade coronary lesions: a comparison between diabetic and non-diabetic patients. Clin Res Cardiol 104(1):59–70

    Article  CAS  PubMed  Google Scholar 

  73. Ahmadi A, Stone GW, Leipsic J, Serruys PW, Shaw L, Hecht H, Wong G, Norgaard BL, O’Gara PT, Chandrashekhar Y et al (2016) Association of Coronary Stenosis and Plaque Morphology With Fractional Flow Reserve and Outcomes. JAMA Cardiol 1(3):350–357.

  74. Van De Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JA, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 10(8):439–452

    Article  PubMed  Google Scholar 

  75. Tu S WJ, Yang J, von Birgelen C, Ferrara A, Pellicano M, Nef H, Tebaldi M, Murasato Y, Lansky A, Barbato E, van der Heijden LC, Reiber JHC, Holm NR, Wijns W (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary X-ray angiography in the international multicenter favor (functional assessment by various flow reconstructions) pilot study. JACC Cardiovasc Interv 2016, In press

  76. Shiono Y, Kitabata H, Kubo T, Masuno T, Ohta S, Ozaki Y, Sougawa H, Orii M, Shimamura K, Ishibashi K et al (2012) Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J 76(9):2218–2225

    Article  PubMed  Google Scholar 

  77. Pawlowski T, Prati F, Kulawik T, Ficarra E, Bil J, Gil R (2013) Optical coherence tomography criteria for defining functional severity of intermediate lesions: a comparative study with FFR. Int J Cardiovasc Imaging 29(8):1685–1691

    Article  PubMed  Google Scholar 

  78. Zafar H, Ullah I, Dinneen K, Matiullah S, Hanley A, Leahy MJ, Sharif F (2014) Evaluation of hemodynamically severe coronary stenosis as determined by fractional flow reserve with frequency domain optical coherence tomography measured anatomical parameters. J Cardiol 64(1):19–24

    Article  PubMed  Google Scholar 

  79. Belkacemi A, Stella PR, Ali DS, Novianti PW, Doevendans PA, van Belle E, Agostoni P (2013) Diagnostic accuracy of optical coherence tomography parameters in predicting in-stent hemodynamic severe coronary lesions: validation against fractional flow reserve. Int J Cardiol 168(4):4209–4213

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Tu acknowledges the support by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, The Shanghai Pujiang Program (No. 15PJ1404200), the National Natural Science Foundation of China (Grants 31500797 and 81570456) and the National Key Research and Development Program of China (Grant 2016YFC0100500). Dr. Dai acknowledges the support by National Natural Science Foundation of China (Grant 81600279).

Disclosures

ST and JW received research Grant from Medis medical imaging systems bv.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqing Yang or Shengxian Tu.

Ethics declarations

Conflict of interest

S. Tu has received a research grant from Medis medical imaging systems bv. All other authors declare that they have no conflict of interest.

Additional information

Miao Chu and Neng Dai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, M., Dai, N., Yang, J. et al. A systematic review of imaging anatomy in predicting functional significance of coronary stenoses determined by fractional flow reserve. Int J Cardiovasc Imaging 33, 975–990 (2017). https://doi.org/10.1007/s10554-017-1085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1085-3

Keywords

Navigation