Glennie, C. L., Carter, W. E., Shrestha, R. L., Dietrich, W. E. (2013): Geodetic imaging with airborne LiDAR: the Earth’s surface revealed. Rep. Prog. Phys., 76(8), 086801.
Article
Google Scholar
Manninen, A. J., O’Connor, E. J., Vakkari, V., Petäjä, T. (2016): A generalised background correction algorithm for a Halo Doppler lidar and its application to data from Finland. Atmos. Meas. Tech., 9, 817–827.
Article
Google Scholar
Zhang, K., Yan, J., Chen, S.-C. (2006): Automatic construction of building footprints from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens., 44(9), 2523–2533.
Article
Google Scholar
Schumann, A., Arndt, D., Wiatr, T., Götz, A. E., Hoppe, A. (2011): High-resolution terrestrial laser scanning and 3D modelling of a mineral deposit for extraction management optimisation. Z. Deutsch. Gesellschaft Geowissenschaft., 162(4), 435–442.
Article
Google Scholar
Kelly, M., Di Tommaso, S. (2015): Mapping forests with Lidar provides flexible, accurate data with many uses. California Agricult., 69(1), 14–20.
Article
Google Scholar
Gouveia, B. D., Portugal, D., Silva, D. C., Marques, L. (2015): Computation sharing in distributed robotic systems: a case study on SLAM. IEEE Trans. Autom. Sci. Eng., 12(2), 410–422.
Article
Google Scholar
Lidar: driving the future of autonomous navigation. Frost & Sullivan, CA, USA, 2016.
Rasshofer, R. H., Gresser, K. (2005): Automotive radar and lidar systems for next generation driver assistance function. Adv. Radio Sci., 3, 205–209.
Article
Google Scholar
Gotzig, H., Geduld, G., (2015): LIDAR-sensorik. In Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort (S. 317–334). Berlin: Springer.
Google Scholar
Laux, T. E., Chen, C.-I. (2014): 3D flash lidar visiton systems for imaging in degraded visual environments. In Degraded visual environments: enhanced, synthetic, and external vision solution. Proc. SPIE (Vol. 9087).
Google Scholar
Wang, H., Wang, B., Liu, B., Meng, X., Yang, G. (2017): Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Robot. Auton. Syst., 88, 71–78.
Article
Google Scholar
Himmelsbach, M., Müller, A., Lüttel, T., Wünsche, H.-J. (2008): LIDAR-based 3D object perception. In Proceedings of 1st international workshop on cognition for technical systems.
Google Scholar
Hata, A., Wolf, D. (2014): Road marking detection using lidar reflective intensity deata and its application to vehicle localization. In IEEE17th international conference on intelligent transportation system, Qingdau, China.
Google Scholar
Poczter, S. L., Jankovic, L. M. (2014): The Google car: driving toward a better future? J. Business Case Stud., 10(1), 7–14.
Article
Google Scholar
Chauffeur Inklusive: BMW Active Assist, BMW [Online]. Available: http://www.bmw.com/ [Accessed 3 Feb. 2017].
Ross, P. E. (11 May 2016): Volvo’s self-driving program will have redundancy for everything. IEEE Spectrum.
Ackerman, E. (17 August 2016): Ford and Baidu invest $150 million in velodyne for affordable lidar for self-driving cars. IEEE Spectrum.
Thakur, R. (2016): Scanning LIDAR in advanced driver assistance systems and beyond. IEEE Cosum. Electron. Mag., 5(3), 48–54.
Article
Google Scholar
LeddarTech Inc., (2015): Leddar M16 multi-element sensor module.
Continental, SRL 1 + SRL 1C infrrot short range lidar sensor (2009).
Toth, C. K. (2009): R&D of mobile lidar mapping and future trends. In Annual conference ASPRS, Baltimore, Maryland, US.
Google Scholar
Velodyne (2017): Data sheet: puck real time 3D LiDAR sensor.
Google Scholar
Quanergy Systems, Inc. (2015): 360∘ 3D LIDAR M8-1 sensor.
Ibeo Automotive Systems GmbH (2014): User manual Ibeo ScaLa B2® laserscanner.
Stone, W. C., Juberts, M., Daglakis, N., Stone, J., Gorman, J. (2004): Performance analysis of next generation LADAR for manufacturing, construction, and mobility. United states department of commerce.
Ullrich, A., Pfennigbauer, M., Rieger, P. (2013): How to read your LIDAR spec – a comparison of single-laser-output and multi-laser-output LIDAR instruments. In Riegl laser measurement systems GmbH.
Google Scholar
Stutz, G. E. (2012): Polygon scanners: components, performance, and design. In G. F. Marshall, G. E. Stutz (Eds.), Handbook of optical and laser scanning (pp. 247–279). Boca Raton: CRC Press.
Google Scholar
Fersch, T., Weigel, R., Koelpin, A. (2017): Challenges in miniaturized automotive long-range lidar system design. In Three-dimensional imaging, visualization, and display, Anaheim, CA, USA. Proc. SPIE (Vol. 10219).
Google Scholar
Yaacobi, A., Sun, J., Moresco, M., Leake, G., Coolbaugh, D., Watts, M. R. (2014): Integrated phase array for wide angle beam. Opt. Lett., 39(15), 4575.
Article
Google Scholar
Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., Watts, M. R. (2013): Large-scale nanophotonic phase array. Nature, 493, 195–199.
Article
Google Scholar
Ackerman, E. (7 January 2016): Quanergy announces $250 solid-state LIDAR for cars, robots, and more. IEEE Spectrum.
Innoviz Technologies (2018): Data sheet of InnovizPro – high performance solid-state LiDAR.
Mizuno, T., Mita, M., Kajikawa, Y., Takeyama, N., Ikeda, H., Kawahara, K. (2008): Study of two-dimensional scanning LIDAR for planetary explorer. In Sensors, systems, and next-generation satellites XII.
Google Scholar
Park, I. H., Jeon, J. A., Nam, J., Nam, S., Lee, J., Park, J. H., Yang, J., Ebisuzaki, T., Kawasaki, Y., Takizawa, Y., Wada, S. (2009): A new LIDAR method using MEMS micromirror array for the JEM-EUSO mission. In Proceedings of the 31st ICRC.
Google Scholar
Moss, R., Yuan, P., Bai, X., Quesada, E., Sudharsanan, R., Stann, B. L., Dammann, J. F., Giza, M. M., Lawler, W. B. (2012): Low-cost compact MEMS scanning ladar system for robotic applications. In Laser radar technology and applications XVII. Proc. SPIE (Vol. 8379).
Chapter
Google Scholar
Sudharsanan, R. (2013): Low cost scanning lidar imager. LIDAR Mag., 3(2).
Hu, Q., Pedersen, C., Rodrigo, P. J. (2016): Eye-safe diode laser Doppler lidar with a MEMS beam-scanner. Opt. Express, 24(3), 1934–1942.
Article
Google Scholar
Hofmann, U., Senger, F., Soerensen, F., Stenchly, V., Jensen, B., Janes, J. Biaxial resonant 7 mm-MEMS mirror for automotive LIDAR application.
E. T. P. o. S. S. I. (EPoSS) (2015): European roadmap smart systems for automated driving.
Stann, B. L., Dammann, J. F., Giza, M. M. (2016): Progress on MEMS-scanned ladar. In Laser radar technology and applications XXI. Proc. SPIE (Vol. 9832).
Google Scholar
Ito, K., Niclass, C., Aoyagi, I., Matsubara, H., Soga, M., Kato, S., Maeda, M., Kagami, M. (2013): System design and performance characterization of a MEMS-based laser scanning time-of-flight sensorbased on a 256x64-pixel single-photon imager. IEEE Photonics J., 5(2), 6800114.
Article
Google Scholar
Giese, T., Janes, J. (2015): 2D MEMS scanning for LIDAR with sub-Nyquist sampling, electronics, and measurement procedure. In Three-dimensional imaging, visualization, and display. Proc. SPIE (Vol. 9495).
Google Scholar
Kim, G., Park, Y. (2016): LIDAR pulse coding for high resolution range imaging at improved refresh rate. Opt. Express, 24(21), 23810–23828.
Article
Google Scholar
Holmström, S. T. S., Baran, U., Urey, H. (2014): MEMS laser scanners: a review. J. Microelectromech. Syst., 23(2), 259–275.
Article
Google Scholar
Agarwal, M., Park, K. K., Candler, R. N., Kim, B., Hopcroft, M. A., Chandorkar, S. A., Jha, C. M., Melamud, R., Kenny, T. W., Murmann, B. (2006): Nonlinear characterization of electrostatic MEMS resonators. In IEEE international frequency control symposium and exposition, Miami, FL, US.
Google Scholar
Milanović, V., Kasturi, A., Yang, J., Hu, F. (2017): Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications. In Laser radar technology and applications, Anaheim,CA, US. Proc. SPIE (Vol. 10191).
Google Scholar
Milanović, V., Kasturi, A., Yang, J., Su, Y. R., Hu, F. (2018): Iterative learning control (ILC) algorithm for greatly increased bandwidth and linearity of MEMS mirrors in LiDAR and related imaging applications. In MOEMS and miniaturized systems XVII, San Francisco, CA, US. Proc. SPIE (Vol. 10545).
Google Scholar
Lee, X., Wang, C. (2015): Optical design for uniform scanning in {MEMS}-based 3D imaging lidar. Appl. Opt., 54(9), 2219–2223.
Article
Google Scholar
Yang, B., Zhou, L., Zhang, X., Koppal, S., Xie, H. (2017): A compact MEMS-based wide-angle optical scanner. In 2017 international conference on optical MEMS and nanophotonics.
Google Scholar
Zhang, X., Koppal, S. J., Zhang, R., Zhou, L., Butler, E., Xie, H. (2016): Wide-angle structured light with a scanning MEMS mirror in liquid. Opt. Express, 24(4), 256226.
Google Scholar
Ataman, Ç., Lani, S., Noell, W., Rooij, N. D. (2013): A dual-axis pointing mirror with moving-magnet actuation. J. Micromech. Microeng., 23(2), 025002.
Article
Google Scholar
Ye, L., Zhang, G., You, Z. (2017): 5 V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application. Sensors, 17(3), 521.
Article
Google Scholar
Smith, B., Hellman, B., Gin, A., Espinoza, A., Takashima, Y. (2017): Single chip lidar with discrete beam steering by digital micromirror device. Opt. Express, 25(13), 14732–14745.
Article
Google Scholar
Wang, Y., Kyoungsik, Y., Wu, M. C. (2016): MEMS optical phased array for LIDAR. In The 21st microoptics conference (MOC), Berkeley, CA, US.
Google Scholar
Sandner, T., Wildenhain, M., Gerwig, C., Schenk, H., Schwarzer, S., Wölfelschneider, H. (2010): Large aperture MEMS scanner module for 3D distance measurement. In MOEMS and miniaturized systems IX. Proc. SPIE (Vol. 7594).
Google Scholar
Wolter, A., Hsu, S.-T., Schenk, H., Lakner, H. K. (2005): Applications and requirements for MEMS scanner mirrors. In MOEMS and miniaturized systems V, San Jose, CA, US. Proc. SPIE (Vol. 5719).
Chapter
Google Scholar
Milanovic, V., Kasturi, A., Yang, J. (2016): Novel fluidic packaging of gimbal-less MEMS mirrors for increased optical resolution and overall performance. In SPIE defense and commercial sensing conference, Baltimore, MD, US.
Google Scholar