Skip to main content

Advertisement

Log in

Battery and battery management for hybrid electric vehicles: a review

Batterie und Batteriemanagement für Hybridfahrzeuge: ein Review

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

According to the legal, social and economic requirements for improved road transportation hybrid electric vehicles (HEVs) are one of the most intensively investigated vehicle concepts of today. To exploit their potential for emission reduction and performance improvement the energy storage system has to be considered as one of the key components of HEVs. This paper reviews the present state of the art pointing out advantages and drawbacks for each battery technology relevant for HEV application. Moreover, it describes the main constrains and requirements from the battery management's point of view. The tools usually applied by battery system developers are covered as well as the processes for identification and design of the optimal battery pack and the appropriate battery management. Finally, the main adjustments that are necessary for customizing a basic battery management system for a given battery chemistry are discussed.

Aufgrund der vielfältigen legistischen, gesellschaftlichen, ökologischen und ökonomischen Anforderungen an die Fahrzeuge von morgen werden Hybridfahrzeuge als ein zukunftsträchtiges Fahrzeugkonzept intensiv analysiert und entwickelt. Um ihr Potenzial hinsichtlich Emissionsreduktion und Leistungssteigerung voll ausschöpfen zu können, müssen die einzelnen Komponenten und Antriebe optimal designed und aufeinander abgestimmt sein. Eine der Schlüsselkomponenten in diesem Zusammenhang stellt das Energiespeichersystem dar. Der vorliegende Beitrag befasst sich daher mit einem umfassenden Überblick über den aktuellen Stand der verfügbaren Technologien unter besonderer Berücksichtigung der jeweiligen Vor- und Nachteile für den Einsatz in Hybridfahrzeugen. Darüber hinaus werden die Anforderungen und Rahmenbedingungen aus Sicht des Batteriemanagements diskutiert. Um für eine spezifische Applikation die bestmögliche Technologie auswählen und ein optimales Batteriepack und Batteriemanagement designen zu können, sind neueste Simulationstools und Testeinrichtungen erforderlich. Darauf aufbauend werden ausgehend von einem allgemeinen Batteriemanagementsystem die erforderlichen Adaptierungen zur Realisierung kunden- bzw. fahrzeugspezifischer Batteriesysteme diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AA.VV. (2006): The economics of lithium. Sect.7-1. ISBN 0 86214 519 8.

  • AA.VV. (2003): Specification of test procedures for supercapacitor in electric vehicle application. EUCAR, Traction Battery Working Group, ECE Contract ENK6-CT2000-00088, Draft 2003.

  • Amine, K., Henriksen, G., Duong, T., Battaglia, V., Barnes, J., Sutula, R. (2002): Lithium ion battery with improved life and abuse tolerance for HEV applications. EVS 19 (2002).

  • Andermann, M. (2003): High-power NiMH and LiIon batteries. Advanced Automotive Battery Conf., 2003. Nice, France.

  • Barnes, J. (2006): R & D efforts of the U.S. Department of Energy related to energy storage for vehicles. IBA 2006, Big Island, Hawaii.

  • Barrade, P. (2001): Simulation tools for power electronics: teaching and research. Symplorer Workshop, 2001.

  • Bergveld, H. J., Kruijt, W. S., Notten, P. H. L. (2002): Battery management system. Ed. Kluwer: 15. ISBN 1-4020-0832-5.

  • Brooks, A. N. (2002): Perspectives on fuel cells and battery electric vehicles. California Air resources Board Workshop, December 2002.

  • Brucchi, F., Conte, M., Giuli Capponi, F., Lo Bianco, G., Salvati, P., Solero, L. (1999): Ultracapacitor tests for EV applications: introduction of new equalisation coefficients. EVS 16, 1999.

  • Buran (Journal of the Barcelona IEEE Student Branch) (2006), Vol 13, No 23, March 2006: 5–30.

  • Burke, A. (2002): Cost-effective combinations of ultracapacitors and batteries for vehicle application. Advanced Automotive Battery Conf. 2002. Las Vegas, USA.

  • Burke, A., Miller, M. (2003): New developments in electrochemical capacitor for vehicle application. Advanced Automotive Battery Conf. 2003. Nice France.

  • Christen, T., Carlen M. W. (2000): Theory of Ragone plots. Journal of Power Sources 91: 210–216.

    Article  Google Scholar 

  • Conte, F. V. (2006): Optimierungsmöglichkeiten von elektrischen Energiespeichern in Hybridfahrzeugen. 10. Handelsblatt Jahrestagung Automobiltechnologien, April 2006.

  • Conte, F. V., Pirker, F. (2005): Voltage depression growth assessment on Ni-MH batteries for HEV application. EVS 21, March 2005.

  • Duong, T. (2000): J. Power Sources, 89 (2000): 244.

    Article  Google Scholar 

  • Ebner, A., Conte, F. V., Pirker, F. (2006): Rapid validation of battery management system with a Dymola hardware-on-the-loop simulation energy storage test bench. EVS 22, October 2006.

  • Geoffroy, D., Ravet, N. (2004): Carbon-coated lithium iron phosphate: Enabling large battery markets for Li-Ion batteries. 21st Int. Seminar on Primary & Secondary Batteries. Florida, 2004.

  • Goodstein, D. (2004): Out of gas: the end of the age of oil. Cap.4., Ed. W.W. Norton & Company.

  • Gragger, J. V., Simic, D., Kral, C., Giuliani, H., Conte, F. V., Pirker, F. (2006): A simulation tool for electric auxiliary drives in HEVs – The Smart Electric Drives library. FISITA World Automotive Congress 2006, Yokohama, Japan.

  • Hariprakash, B., Martha, S. K., Shukla, A. (2003): Monitoring sealed automotive lead-acid batteries by sparse-impedance spectroscopy. Proc. Indian Acad Sci (Chem Sci), Vol. 115, N. 5, 6: 465–472.

    Article  Google Scholar 

  • Hawkins, J. M., Barling, L. O., (1995): Some aspects of battery impedance characteristics. Proc. of the 17th Int. Telecommunications Energy Conf., 1995.

  • Howell, D. (2006): FY 2005 proress report for energy storage research and development energy efficiency and renewable energy. U.S. DOE 20585-0121, January 2006 (http://www.eere.energy.gov/vehiclesandfuels/pdfs/program/2005_energy_storage.pdf/).

  • Karden, E., Shinn, P., Bostock, P., Cunningham, J., Schoultz, E., Kok, D. (2005): Journal of Power Sources, 2005 publication approved.

  • Kiehne, H. A. (2003): Battery technology handbook. 2nd ed. Marcel Dekker: New York, Basel: 50.

    Google Scholar 

  • Kitoh, K., Remoto, H. (1999): 100 Wh large size Li-ion batteries and safety tests. Journal of Power Sources 81–82: 887–890.

    Article  Google Scholar 

  • Linden, D., Reddy, T. B. (2002): Handbook of batteries. 3rd ed. McGraw-Hill.

  • London Metal Exchange (http://www.lme.co.uk/)

  • Miller, J., Brost, R. (2001): Future electrical requirements for fuel economy enhanced passenger vehicles. AABC, February 2001.

  • Nguyen, J. (2004): Safety performance for phosphate-based large format lithium-ion battery. Intelec Conf., 2004.

  • Peukert, W. (1897): Elektrotechnische Zeitschrift. 20: 20–21.

    Google Scholar 

  • Ragone, D. V. (1968): Review of battery systems for electrically powered vehicles. Mid-Year Meeting of the SAE, Detroit, May 20–24, 1968.

  • Saakes, M., Kleijnen, C., Schmal, D., Ten Have, P., (2001): Advanced bipolar lead-acid battery for hybrid electric vehicles. Journal of Power Sources, 95. Elsevier Sequoia SA, Lausanne, Switzerland: 68–78.

  • Salkind, J., Fennie, C., Singh, P., Atwater, T., Reisner, D. E. (1999): Determination of state-of-charge and state-of-health of batts: by fuzzy logic methodology. Journal of Power Sources 80: 293–300.

    Article  Google Scholar 

  • Sebille, D. (2003): Electrical energy management: 42 V perspective. MIT 42 V meeting, Dearborn, March 6th, 2003.

  • Shim, J., Sierra, A., Striebel, K. A. (o. J.): The development of low cost LiFePO4-based high power lithium-ion batteries. eScholarship Repository, University of California (http://repositories.cdlib.org/lbnl/LBNL-54098/).

  • Simic, D., Giuliani, H., Kral, C., Pirker, F. (2006): Simulation of conventional and hybrid vehicle including auxiliaries with respect to fuel consumption and exhaust emissions. SAE 2006 World Congress, Detroit, USA.

  • Spier, B., Gutmann, G. (2003): 42 V battery requirements – lead acid at its limits. Journal of Power Sources 116: 99–104.

    Article  Google Scholar 

  • U.S. Geological Survey Minerals Yearbook (2005) (http://minerals.usgs.gov/minerals/pubs/commodity/lithium/)

  • VV.AA. (1996): Electric vehicle battery test procedures manual. Rev. 2, January, 1996.

  • VV.AA. (2001): PNGV battery test manual. DOE/ID-10597 Rev. 3, 2001.

  • Willer, B. (2003): Investire-Network: Supercaps Report. Thematic Network Contract No ENK5-CT-2000-20336, 2003.

  • Wright, R. B., Jamison, D. K. (2003): FreedomCAR testing of selected commercial ultracapacitor. 204th Meeting 2003: The Electrochemical Society.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conte, F. Battery and battery management for hybrid electric vehicles: a review. Elektrotech. Inftech. 123, 424–431 (2006). https://doi.org/10.1007/s00502-006-0383-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-006-0383-6

Keywords

Schlüsselwörter

Navigation