Skip to main content
Log in

Monitoring sealed automotive lead-acid batteries by sparse-impedance spectroscopy

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A reliable diagnostics of lead-acid batteries would become mandatory with the induction of an improved power net and the increase of electrically assisted features in future automobiles. Sparse-impedance spectroscopic technique described in this paper estimates the internal resistance of sealed automotive lead-acid batteries in the frequency range 10 Hz-10 kHz, usually produced by the alternators fitted in the automobiles. The state-of-health of the battery could be monitored from its internal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dell R M and Rand D A J 2002Understanding batteries (Cambridge: Royal Society of Chemistry)

    Google Scholar 

  2. Fuet F 1998J. Power Sources 70 59

    Article  Google Scholar 

  3. Piller S, Perrin M and Jossen A 2001J. Power Sources 96 113

    Article  CAS  Google Scholar 

  4. Rodrigues S, Munichandraiah N and Shukla A K 2000J. Power Sources 87 12

    Article  CAS  Google Scholar 

  5. Shukla A K, Ganesh Kumar V, Munichandraiah N and Srinath T 1998J. Power Sources 74 234

    Article  CAS  Google Scholar 

  6. Champlin K and Bertness K 2000Proc. 22nd Int. Telecommun. Energy Conf. (Phoenix:IEEE) paper 19.3 348

  7. Charlesworth J M 1996Electrochim. Acta 41 1721

    Article  CAS  Google Scholar 

  8. Nelatury S R and Singh P 2002J. Power Sources 112 621

    Article  CAS  Google Scholar 

  9. Salkind A J, Fennie C, Singh P, Atwater T and Reisner D E 1999J. Power Sources 80 293

    Article  CAS  Google Scholar 

  10. Stoynov Z, Nishev T, Vacheva V and Stamenova N 1997J. Power Sources 64 189

    Article  CAS  Google Scholar 

  11. Martinet S, Durand R, Ozil P, Lablanc P and Blanchard P 1999J. Power Sources 83 93

    Article  CAS  Google Scholar 

  12. Feder D O, Hlavac M J and McShane S J 1994J. Power Sources 48 135

    Article  Google Scholar 

  13. Armenta C, Doria J, De Andrès M C, Urratia J, Fullea J and Graña F 1989J. Power Sources 27 189

    Article  CAS  Google Scholar 

  14. Baert D H J and Vervaet A A K 2003J. Power Sources 114 357

    Article  CAS  Google Scholar 

  15. Blood P J and Sotiropoulos S 2002J. Power Sources 110 96

    Article  CAS  Google Scholar 

  16. Mancier V, Metrot A and Willmann P 2003J. Power Sources 117 223

    Article  CAS  Google Scholar 

  17. Mancier V, Metrot A and Willmann P 2002Electrochim. Acta 47 1633

    Article  CAS  Google Scholar 

  18. Hill I R and Andrukaitis Ed E 2001J. Power Sources 103 98

    Article  CAS  Google Scholar 

  19. Mauracher P and Karden E 1997J. Power Sources 67 69

    Article  CAS  Google Scholar 

  20. Jossen A, Späth V, Döring H and Garche J 1999J. Power Sources 84 283

    Article  CAS  Google Scholar 

  21. Stoynov Z, Savova-Stoynov B and Kossev T 1990J. Power Sources 30 275

    Article  Google Scholar 

  22. Salkind A, Atwater T, Singh P, Nelatury S, Damodar S, Fennie Jr C and Reisner D 2001J. Power Sources 96 151

    Article  CAS  Google Scholar 

  23. Tenno A, Tenno R and Suntio T 2001J. Power Sources 103 42

    Article  CAS  Google Scholar 

  24. Meissner E and Richter G 2003J. Power Sources 116 79

    Article  CAS  Google Scholar 

  25. Karden E, Buller S, Rik W and De Doncker 2002Electrochim. Acta 47 2347

    Article  CAS  Google Scholar 

  26. Buller S, Walter J, Karden E and De Doncker R W 2002Adv. Automotive Battery Conf., Las Vegas

  27. Goodenough J B and Shukla A K 1988Solid state ionic devices (eds)B V R Chowdhari and S Radhakrishna (Singapore: World Scientific) p. 573

    Google Scholar 

  28. Venugopalan S 1992 Ph D thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  29. Linden D and Reddy T B (eds) 2002Handbook of batteries 3rd edn (New York: McGraw-Hill)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shukla.

Additional information

Dedicated to Professor C N R Rao on his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariprakash, B., Martha, S.K. & Shukla, A.K. Monitoring sealed automotive lead-acid batteries by sparse-impedance spectroscopy. J Chem Sci 115, 465–472 (2003). https://doi.org/10.1007/BF02708238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708238

Keywords

Navigation