Skip to main content
Log in

An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP

  • Mathematical methods in data science
  • Published:
Soft Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, a pseudo-maximization by parts method is introduced by developing the maximization by parts algorithm for the parameter estimation of pseudo-copula regression models. Sub- and main score equations are obtained from the pairwise log-likelihood function and solved by the proposed iterative algorithm. The pseudo-maximization by parts algorithm is an iterative algorithm to avoid having to calculate the second-order derivative of the full log-likelihood function as maximization by parts algorithm. Instead of the Gaussian copula function in maximization by parts algorithm, the pseudo-Gaussian copula function is included in the new algorithm. The mean square errors of the estimators found by the maximization by parts algorithm and the pseudo-maximization by parts algorithm are compared using real Turkish comprehensive insurance data taken from the Turkish Insurance Information and Monitoring Center for the year 2017, and it is notable that the proposed algorithm provided better results in terms of having lower errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Brigo D, Pallavicini A, Torresetti R (2010) Credit models and the crisis: a journey into CDOs, copulas, correlations and dynamic models. Wiley, New York

    Google Scholar 

  • Czado C, Kastenmeier R, Brechmann EC, Min A (2012) A mixed copula model for insurance claims and claim sizes. Scand Actuar J 4:278–305

    Article  MathSciNet  MATH  Google Scholar 

  • Erdemir ÖG (2020) Modified pseudo-copula regression model. Ph.d. thesis, Hacettepe University

  • Erdemir ÖK, Sucu M (2022) A modified pseudo-copula regression model for risk groups with various dependency levels. J Stat Comput Simul 92(5):1092–1112

    Article  MathSciNet  MATH  Google Scholar 

  • Fang Y, Madsen L (2013) Modified Gaussian pseudo-copula: application in insurance and finance. Insur Math Econ 53(1):292–301

    Article  MathSciNet  MATH  Google Scholar 

  • Fermanian JD (2005) Goodness-of-fit tests for copulas. J Multivar Anal 95(1):119–152

    Article  MathSciNet  MATH  Google Scholar 

  • Fermanian JD, Wegkamp M (2012) Time-dependent copulas. J Multivar Anal 110:19–29

    Article  MathSciNet  MATH  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213

    Article  MathSciNet  MATH  Google Scholar 

  • Nelsen RB (2007) An introduction to copulas. Springer, Berlin

    MATH  Google Scholar 

  • Patton AJ (2006) Estimation of multivariate models for time series of possibly different lengths. J Appl Econ 21(2):147–173

    Article  MathSciNet  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Publications De L’institut De Statistique De L’université De Paris 8:229–231

    MathSciNet  MATH  Google Scholar 

  • Song PXK (2007) Correlated data analysis: modeling, analytics, and applications. Springer, Berlin

    MATH  Google Scholar 

  • Song PXK, Fan Y, Kalbfleisch JD (2005) Maximization by parts in likelihood inference. J Am Stat Assoc 100(472):1145–1158

    Article  MathSciNet  MATH  Google Scholar 

  • Song PXK, Li M, Yuan Y (2009) Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65(1):60–68

    Article  MathSciNet  MATH  Google Scholar 

  • White H (1996) Estimation, inference and specification analysis (No. s). Cambridge University Press, Cambridge

    Google Scholar 

  • Weiß G (2011) Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study. Comput Stat 26(1):31–54

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Gao K, Li Y, Zhang Q (2022) Maximum likelihood estimation methods for copula models. Comput Econ 60(1):99–124

    Article  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Övgücan Karadağ Erdemir.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose. Author ÖK. Erdemir declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Availability of data and material

The data were provided by Turkish Insurance Information and Monitoring Center with restricted use. I am not allowed to share with third parties.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\frac{\partial dep\left({{\varvec{\theta}}}_{1},{{\varvec{\theta}}}_{2}\right)}{\partial{\varvec{\beta}}}=\frac{\partial }{\partial{\varvec{\beta}}}ln\prod_{i=1}^{n}\left\{{f}_{{{X}_{1}X}_{2}}\left({x}_{i1},{x}_{i2}|{\mu }_{i},{\nu }_{i}^{2},{\lambda }_{i}\right)\right\}=\sum_{i=1}^{n}\frac{\partial }{\partial{\varvec{\beta}}}ln\left\{{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)\right\}=\sum_{i=1}^{n}\frac{1}{\left\{{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)\right\}}\left(\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)}{\partial{\varvec{\beta}}}-\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)}{\partial{\varvec{\beta}}}\right)$$

Let \(\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)}{\partial{\varvec{\beta}}}\) be multiplied by \(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}\) and \(\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)}{\partial{\varvec{\beta}}}\) be multiplied by \(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}-1\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}-1\right)}\).

$$=\sum_{i=1}^{n}\frac{1}{\left\{{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)\right\}}\left(\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial{\varvec{\beta}}} -\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}-1\right)}\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}-1\right)}{\partial{\varvec{\beta}}}\right)$$

Partial integrals \(\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}\), \(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial{\varvec{\beta}}}\), \(\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}\) and \(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}-1\right)}{\partial{\varvec{\beta}}}\) are expressed one by one below.

$$\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}=\frac{\partial }{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}\Phi \left(\frac{{\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{\rho }_{12}^{*}{\Phi }^{-1}\left({F}_{{X}_{1}}\left({x}_{i1}\right)\right)}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\right)\frac{1}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\frac{1}{\left({\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)\right)}$$
$$\frac{\partial }{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}\Phi \left(\frac{{\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{\rho }_{12}^{*}{\Phi }^{-1}\left({F}_{{X}_{1}}\left({x}_{i1}\right)\right)}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\right)=\phi \left(\frac{{\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{\rho }_{12}^{*}{\Phi }^{-1}\left({F}_{{X}_{1}}\left({x}_{i1}\right)\right)}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\right)={d}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)$$
$$\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}={d}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)\frac{1}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\frac{1}{\left({\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)\right)}$$
(1)

Let \(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial{\varvec{\beta}}}\) be multiplied by \(\frac{\partial {\lambda }_{i}}{\partial {\lambda }_{i}}\). For a Poisson GLM \({\lambda }_{i}={e}^{{{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{\varvec{\beta}}}\), \(\frac{\partial {\lambda }_{i}}{\partial{\varvec{\beta}}}={{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{e}^{{{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{\varvec{\beta}}}={{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{\lambda }_{i}\) is written.

$$\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial{\varvec{\beta}}}=\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial {\lambda }_{i}}\frac{\partial {\lambda }_{i}}{\partial{\varvec{\beta}}}=\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial {\lambda }_{i}}{{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{\lambda }_{i}$$

\(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial {\lambda }_{i}}\) is expressed as \(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial {\lambda }_{i}}=\frac{\partial }{\partial {\lambda }_{i}}\sum_{k=0}^{{x}_{i2}}\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}=\sum_{k=0}^{{x}_{i2}}\frac{\partial }{\partial {\lambda }_{i}}\left(\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)\).

Since \(0\le k\le {x}_{i2}\), when deriving at the point k = 0, the expression \(\sum_{k=0}^{{x}_{i2}}\frac{1}{(k-1)!}\dots .\) is encountered. The range is separated as \(k=0\) and \(1\le k\le ,\) since the factorial operation is undefined for negative numbers.

$$=\frac{\partial }{\partial {\lambda }_{i}}\left(\frac{1}{0!}{{\lambda }_{i}}^{0}{e}^{-{\lambda }_{i}}\right)+\sum_{k=1}^{{x}_{i2}}\frac{\partial }{\partial {\lambda }_{i}}\left(\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)$$
$$=\frac{\partial }{\partial {\lambda }_{i}}\left({e}^{-{\lambda }_{i}}\right)+\sum_{k=1}^{{x}_{i2}}\left(\frac{1}{k!}k{{\lambda }_{i}}^{k-1}{e}^{-{\lambda }_{i}}-\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)=-{e}^{-{\lambda }_{i}}+\sum_{k=1}^{{x}_{i2}}\left(\frac{1}{\left(k-1\right)!}{{\lambda }_{i}}^{k-1}{e}^{-{\lambda }_{i}}-\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)=-{e}^{-{\lambda }_{i}}+\left(\sum_{k=1}^{{x}_{i2}}\frac{1}{\left(k-1\right)!}{{\lambda }_{i}}^{k-1}{e}^{-{\lambda }_{i}}\right)-\left(\sum_{k=1}^{{x}_{i2}}\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)$$
$$=-{e}^{-{\lambda }_{i}}+\left(\sum_{k=0}^{{x}_{i2}-1}\frac{1}{\left(k\right)!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)-\left(\sum_{k=1}^{{x}_{i2}}\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)=-{e}^{-{\lambda }_{i}}+{e}^{-{\lambda }_{i}}+\left(\sum_{k=1}^{{x}_{i2}-1}\frac{1}{\left(k\right)!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)-\left(\sum_{k=1}^{{x}_{i2}-1}\frac{1}{k!}{{\lambda }_{i}}^{k}{e}^{-{\lambda }_{i}}\right)-\frac{1}{{x}_{i2}!}{{\lambda }_{i}}^{{x}_{i2}}{e}^{-{\lambda }_{i}}=-\frac{1}{{x}_{i2}!}{{\lambda }_{i}}^{{x}_{i2}}{e}^{-{\lambda }_{i}}=-{f}_{{X}_{2}}\left({x}_{i2}|{\lambda }_{i}\right)$$
$$\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}{\partial{\varvec{\beta}}}=-{f}_{{X}_{2}}\left({x}_{i2}|{\lambda }_{i}\right){{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{\lambda }_{i}$$
(2)

\(\frac{\partial {D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)}{\partial {F}_{{X}_{2}}\left({x}_{i2}\right)}\) and \(\frac{\partial {F}_{{X}_{2}}\left({x}_{i2}-1\right)}{\partial{\varvec{\beta}}}\) are the discrete forms of Eqs. (1) and (2), respectively.

$$ \frac{{\partial D_{{\rho_{12}^{*} }} \left( {F_{{X_{1} }} \left( {x_{i1} } \right),F_{{X_{2} }} \left( {x_{i2} - 1} \right)} \right)}}{{\partial F_{{X_{2} }} \left( {x_{i2} } \right)}} = d_{{\rho_{12}^{*} }} \left( {F_{{X_{1} }} \left( {x_{i1} } \right),F_{{X_{2} }} \left( {x_{i2} - 1} \right)} \right)\frac{1}{{\sqrt {\left( {1 - \left( {\rho_{12}^{*} } \right)^{2} } \right)} }} $$
(3)

\(\frac{{\partial F_{{X_{2} }} \left( {x_{i2} - 1} \right)}}{{\partial {\varvec{\beta}}}} = \frac{{\partial F_{{X_{2} }} \left( {x_{i2} - 1} \right)}}{{\partial \lambda_{i} }}\frac{{\partial \lambda_{i} }}{{\partial {\varvec{\beta}}}} = \frac{{\partial F_{{X_{2} }} \left( {x_{i2} - 1} \right)}}{{\partial \lambda_{i} }}{\varvec{z}}_{{{\varvec{i}}2}}^{\user2{^{\prime}}} \lambda_{i}\)

$$ \frac{{\partial F_{{X_{2} }} \left( {x_{i2} - 1} \right)}}{{\partial \lambda_{i} }} = \frac{\partial }{{\partial \lambda_{i} }}\mathop \sum \limits_{k = 0}^{{x_{i2} - 1}} \frac{1}{k!}\lambda_{i}^{k} e^{{ - \lambda_{i} }} = - f_{{X_{2} }} \left( {x_{i2} - 1{|}\lambda_{i} } \right) $$
$$ \frac{{\partial F_{{X_{2} }} \left( {x_{i2} - 11} \right)}}{{\partial {\varvec{\beta}}}} = - f_{{X_{2} }} \left( {x_{i2} - 1{|}\lambda_{i} } \right){\varvec{z}}_{{{\varvec{i}}2}}^{\user2{^{\prime}}} \lambda_{i} $$
(4)

All components for the solution of the second main score equation are obtained by Eqs. (1)–(4), and \(\frac{\partial {l}_\mathrm{dep}\left({{\varvec{\theta}}}_{1},{{\varvec{\theta}}}_{2}\right)}{\partial{\varvec{\beta}}}\) is written in Eq. (5) with the definition of \({d}_{{\rho }_{12}^{*}}\left(.,.\right)\).

$$\frac{\partial {l}_\mathrm{dep}\left({{\varvec{\theta}}}_{1},{{\varvec{\theta}}}_{2}\right)}{\partial{\varvec{\beta}}}=\sum_{i=1}^{n}\frac{1}{\left({D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)\right)}*\left[\phi \left(\frac{{\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{\rho }_{12}^{*}{\Phi }^{-1}\left({F}_{{X}_{1}}\left({x}_{i1}\right)\right)}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\right)*\frac{1}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\frac{1}{\phi \left({\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)\right)}\left(-{f}_{{X}_{2}}\left({x}_{i2}|{\lambda }_{i}\right){{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{\lambda }_{i} \right)-\phi \left(\frac{{\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)-{\rho }_{12}^{*}{\Phi }^{-1}\left({F}_{{X}_{1}}\left({x}_{i1}\right)\right)}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\right)\frac{1}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}\frac{1}{\phi \left({\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)\right)}\left(-{f}_{{X}_{2}}\left({x}_{i2}-1|{\lambda }_{i}\right){{\varvec{z}}}_{{\varvec{i}}2}^{\boldsymbol{^{\prime}}}{\lambda }_{i}\right)\right]$$
$$\frac{\partial {l}_\mathrm{dep}\left({{\varvec{\theta}}}_{1},{{\varvec{\theta}}}_{2}\right)}{\partial{\varvec{\beta}}}=\sum_{i=1}^{n}\frac{1}{\left({D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)-{D}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)\right)} * \left[\frac{{d}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)}{\phi \left({\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}-1\right)\right)\right)}-\frac{{d}_{{\rho }_{12}^{*}}\left({F}_{{X}_{1}}\left({x}_{i1}\right),{F}_{{X}_{2}}\left({x}_{i2}\right)\right)}{\phi \left({\Phi }^{-1}\left({F}_{{X}_{2}}\left({x}_{i2}\right)\right)\right)}\right]*\frac{{{\varvec{z}}}_{{\varvec{i}}2}^{\mathbf{^{\prime}}}{\lambda }_{i}}{\sqrt{\left(1-{\left({\rho }_{12}^{*}\right)}^{2}\right)}}$$
(5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdemir, Ö.K. An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP. Soft Comput 27, 11227–11241 (2023). https://doi.org/10.1007/s00500-023-08722-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08722-8

Keywords

Navigation