Skip to main content
Log in

Novel exponential fuzzy information measures

  • Fuzzy systems and their mathematics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Knowledge is basically a piece of information considered in a particular useful context under consideration. A knowledge measure as a dual of fuzzy entropy quantifies the knowledge associated with a fuzzy set. This communication is intended to introduce a novel exponential fuzzy knowledge measure. Furthermore, a new decision-making method using the VIKOR concept based on proposed knowledge measure is put forward. The working of proposed decision-making method is explained through two numerical examples. Considering the importance of criteria weights in decision-making, two ways have been discussed for their evaluation. Besides, three new measures, namely an exponential fuzzy accuracy measure, an exponential fuzzy entropy measure and an exponential fuzzy similarity measure, have been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  • Atanassov KT (1986) Intutionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  Google Scholar 

  • Bajaj RK, Kumar T, Gupta N (2012) \(R\)-norm intutionistic fuzzy information measures and its computational applications. ICECCS 2012. CCIS 305:372–380

    Google Scholar 

  • Boekee DE, Vander Lubbe JCA (1980) The \(R\)-norm information measure. Information Control 45:136–155

    Article  MATH  Google Scholar 

  • Brans JP, Mareschel V (1984) PROMETHEE: A new family of outranking methods in multicriteria analysis. In: Brans JP (Eds.) Operational research’ 84. North-Holland, New York, pp 477–490

  • Benayoun R, Roy B, Sussman B (1966) ELECTRE: Une méthode pour guider le choix en présence de points de vue multiples. Note de travail 49, Direction Scientifique: SEMA-METRA International

  • Cuong BC, Kreinovich V (2012) Picture fuzzy sets-a new concept for computational intelligence problems. In: Proceedings of 3rd world congress on information and communication technologies (WICT) pp. 1-6

  • Chen T, Li C (2010) Determining objective weights with intutionistic fuzzy entropy measures: A comparative analysis. Information Sciences 180:4207–4222

    Article  Google Scholar 

  • Chu ATW, Kalaba RE, Spingarn K (1979) A comparison of two methods for determining the weights of belonging to fuzzy sets. J Optimiz Theor App 27:531–538

    Article  MATH  Google Scholar 

  • Choo EU, Wedley WC (1985) Optimal criterion weights in repetitive multicriteria decision making. J Oper Res Soc 36:983–992

    Article  MATH  Google Scholar 

  • Chen T, Li C (2010) Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Information Sciences 180:4207–4222

    Article  Google Scholar 

  • Chen SJ, Chen SM (2001) A new method to measure the similarity between fuzzy numbers. IEEE Int Conf Fuzzy Syst 3:1123–1126

    Google Scholar 

  • Luca AD, Termini S (1972) A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inf Control 20:301–312

    Article  MATH  Google Scholar 

  • Deng Y (2012) D Numbers: theory and applications. J Inf Comput Sci 9(9):2421–2428

    Google Scholar 

  • Fan J (2002) Some new fuzzy entropy formulas. Fuzzy Sets Syst 128:277–284

    Article  MATH  Google Scholar 

  • Fan ZP (1996) Complicated multiple attribute decision making: theory and applications. Ph.D. Dissertation, Northeastern university, Shenyang, China

  • Gomes LFAM, Lima MMPP (1991) Todim: Basic and application to multicriteria ranking of projects with environmental impacts. Found Comput Decis Sci 16:113–127

    MATH  Google Scholar 

  • Gerstenkorn T, Manko J (1991) Correlation of intuitionistic fuzzy sets. Fuzzy Sets Syst 44:39–43

    Article  MATH  Google Scholar 

  • Guleria A, Bajaj RK (2018) Pythagorean fuzzy (R, S)-norm Information measure for multicriteria decision-making problem. Adv Fuzzy Syst Appl Theory. https://doi.org/10.1155/2018/8023013

    Article  MATH  Google Scholar 

  • Guleria A, Bajaj RK (2020) Pythagorean fuzzy (R, S)-norm discriminant measure in various decision making processes. J Intell Fuzzy Syst 38(1):761–777

    Article  Google Scholar 

  • Havdra JH, Charvat F (1967) Quantification method classification process: concept of structral \(\beta \)-entropy. Kybernetika 3:30–35

    Google Scholar 

  • Hung WL, Yang MS (2006) Fuzzy entropy on intutionistic fuzzy sets. Int J Intell Syst 21:443–451

    Article  MATH  Google Scholar 

  • Hwang CL, Lin MJ (1987) Group decision making under multiple criteria: methods and applications. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  • Hooda DS (2004) On generalized measures of fuzzy entropy. Mathematica slovaca 54:315–325

    MATH  Google Scholar 

  • Hwang CL, Yoon KP (1981) Multiple attribute decision-making: methods and Applications. Springer- Verlag, New York, NY, USA

    Book  MATH  Google Scholar 

  • Hwang CH, Yang MS (2008) On entropy of fuzzy sets. Int J Uncertainty Fuzziness Knowl-Based Syst 16:519–527

    Article  MATH  Google Scholar 

  • Joshi R, Kumar S (2016) \((R, S)\)-norm information measure and a relation between coding and questionnaire theory. Open Syst Inf Dyn 23(3):1650015. https://doi.org/10.1142/S1230161216500153

    Article  MATH  Google Scholar 

  • Joshi R, Kumar S (2017) A new exponential fuzzy entropy of order-\((\alpha ,\beta )\) and its application in multiple attribute decision making. Comm Math Stat 5(2):213–229

    Article  MATH  Google Scholar 

  • Joshi R, Kumar S (2018) An \((R^{\prime }, S^{\prime })\)-norm fuzzy relative information measure and its applications in strategic decision-making. Comput Appl Math 37:4518–4543

    Article  MATH  Google Scholar 

  • Joshi R, Kumar S (2018) An exponential Jensen fuzzy divergence measure with applications in multiple attribute decision-making. Math Prob Eng 2018:4342098. https://doi.org/10.1155/2018/4342098

    Article  Google Scholar 

  • Joshi R, Kumar S (2018) A new weighted \((\alpha , \beta )\)-norm information measure with applications in coding theory. Physica A- Statis Mech its Appl 510:538–551

    Article  MATH  Google Scholar 

  • Joshi R, Kumar S (2018) A novel fuzzy decision making method using entropy weights based correlation coefficients under intuitionistic fuzzy environment. Int J Fuzzy Syst 21(1):232–242

    Article  Google Scholar 

  • Joshi R, Kumar S (2018) An \((R, S)\)-norm fuzzy information measure with its applications in multiple-attribute decision-making. Comp Appl Math 37(3):2943–2964

    Article  MATH  Google Scholar 

  • Kosko B (1986) Fuzzy entropy and conditioning. Inf Sci 40(2):165–174

    Article  MATH  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  MATH  Google Scholar 

  • Kerridge DF (1961) Inaccuracy and inference. J Roy Stat Soc Ser B Methodol 23:184–194

    MATH  Google Scholar 

  • Kaufmann A (1975) Introduction to the theory of fuzzy subsets. Academic Press, New York, NY, USA

    MATH  Google Scholar 

  • Liu M, Ren H (2014) A new intutionistic fuzzy entropy and application in multi-attribute decision-making. Information 5:587–601

    Article  Google Scholar 

  • Li P, Liu B (2008) Entropy of credibility distributions for fuzzy variables. IEEE Trans Fuzzy Syst 16:123–129

    Article  Google Scholar 

  • Lubbe V (1981) A generalized probabilistic theory of measurement of certainty and information, [Ph.D. Thesis] Delft, The Netherlands: Department of Electrical Engineering, Delft University of Technology

  • Montes I, Pal NR, Montes S (2018) Entropy measures for Atanassov intuitionistic fuzzy sets based on divergence. Soft Computing 22:5051–5071

    Article  MATH  Google Scholar 

  • Nguyen H (2015) A new knowledge-based measure for Intuitionistic Fuzzy Sets and its application in multiple attribute group decision making. Expert Syst Appl 42(22):8766–8774

    Article  Google Scholar 

  • Pal NR, Pal SK (1989) Object background segmentation using new definitions of entropy. IEE Proc E 366:284–295

    Google Scholar 

  • Opricovic S (1998) Multi-criteria optimization of civil engineering systems. University of Belgrade, Belgrade, Serbia

    Google Scholar 

  • Opricovic S, Tzeng GH (2007) Extended VIKOR method in comparison with outranking methods. Eur J Oper Res 178:514–529

    Article  MATH  Google Scholar 

  • Renyi A (1961) On measures of entropy and information. In: Proceedings 4th Barkley symp on Math Stat and Probability, University of California Press 1:547-561

  • Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New York, NY, USA

    MATH  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MATH  Google Scholar 

  • Singh S, Lalotra S, Sharma S (2019) Dual concepts in fuzzy theory: entropy and knowledge measure. Int J Intell Syst. https://doi.org/10.1002/int.22085

    Article  Google Scholar 

  • Smarandache F (2006) Neutrosophic set- A generalization of the intuitionistic fuzzy set. In: IEEE International conference on granular computing. https://doi.org/10.1109/GRC.2006.1635754

  • Szmidt E, Kacprzyk J, Bujnowski P (2010) On some measures of information and knowledge for intuitionistic fuzzy sets. \(14^{th}\) Int. Conf. on IFSs, Notes IFS, 16(2):1-11

  • Szmidt E, Kacprzyk J, Bujnowski P (2014) How to measure the amount of knowledge conveyed by Atanassov’s intuitionistic fuzzy sets. Information Sciences 257:276–285

  • Szmidt E, Kacprzyk J (2001) Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118(3):467–477

    Article  MATH  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzman-Gibbs statistics. J Stat Phys 52:480–487

    Article  Google Scholar 

  • Torra V, Narukawa Y (2009) On hesitant fuzzy sets and decision. The IEEE Conference on Fuzzy Systems, Jeju Island, Korea, pp. 1378-1382

  • Arya V, Kumar S (2020) Knowledge measure and entropy: a complementary concept in fuzzy theory. Granular Computing. https://doi.org/10.1007/s41066-020-00221-7

    Article  Google Scholar 

  • Verma R, Sharma BD (2011) A measure of inaccuracy between two fuzzy sets. Cybern Inf Technol 11:13–23

    Google Scholar 

  • Wei CP, Wang P, Zhang YZ (2011) Entropy, similarity measure for interval-valued intuitionistic fuzzy sets and their application. Information Sciences 181(19):4273–4286

    Article  MATH  Google Scholar 

  • Xia M, Xu Z (2012) Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment. Inf Fusion 13:31–47

    Article  Google Scholar 

  • Ye J (2010) Fuzzy dcision-making method based on the weighted correlation coefficient under intutionistic fuzzy enviornment. Eur J Oper Res 205:202–204

    Article  Google Scholar 

  • Yu PL (1973) A class of solutions for group decision making problem. Management Science 19:936–946

    Article  MATH  Google Scholar 

  • Yager RR (1979) On the measure of fuzziness and negation part I: membership in the unit interval. Int J Gen Syst 5(4):221–229

    Article  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Comput 8(3):338–353

    MATH  Google Scholar 

  • Zadeh LA (1968) Probability measures of fuzzy events. J Math Anal Appl 23:421–427

    Article  MATH  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences 8:199–249

    Article  MATH  Google Scholar 

  • Zavadskas EK, Kaklauskas A, Sarka V (1994) The new method of multicriteria complex proportional assessment of projects. Technol Econ Develop Economy 1(3):131–139

    Google Scholar 

Download references

Acknowledgements

The author is thankful to editors and anonymous reviewers for their constructive, valuable and intelligent suggestions which not only improved this manuscript but also enhanced my knowledge.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Rajesh Joshi. The first draft of the manuscript was written by Rajesh Joshi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajesh Joshi.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose. It is certified that author Rajesh Joshi has no conflict of interests.

Human participants or animals

This article does not contain any studies with human participants or animals performed by author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix ‘A’

Proof of Theorem 3.2

  1. 1.

    Consider the function

    $$\begin{aligned} \digamma (\beta )=\frac{\beta e^{(1-\beta )}+(1-\beta ) e^\beta -\sqrt{e}}{1-\sqrt{e}}; ~ 0\le \beta \le 1. \end{aligned}$$
    (6.1)

    Since the function (6.1) is continuous on closed interval [0,1], therefore, it will attain its bounds on [0,1]. To determine the bounds, differentiating (6.1) with respect to \(\beta \), we get

    $$\begin{aligned} \frac{d\digamma (\beta )}{d\beta }=\frac{(1-\beta ) e^{1-\beta }-\beta e^\beta }{1-\sqrt{e}}. \end{aligned}$$
    (6.2)

    Substituting (6.2) equals to zero and using the fact that \((1-\sqrt{e})\ne 0\), we have

    $$\begin{aligned} (1-\beta ) e^{(1-\beta )}=\beta e^\beta . \end{aligned}$$
    (6.3)

    Since (6.3) holds at  \(\beta =\frac{1}{2}\), therefore,  \(\beta =\frac{1}{2}\) is its stationary point. To check the nature of point  \(\beta =\frac{1}{2}\), differentiating (6.2) with respect to \(\beta \), we get

    $$\begin{aligned} \frac{d^2\digamma (\beta )}{d\beta ^2}=\frac{(\beta -2)e^{1-\beta }-e^\beta (1+\beta )}{1-\sqrt{e}}. \end{aligned}$$
    (6.4)

    At \(\beta =\frac{1}{2}\), \(\displaystyle \frac{d^2\digamma (\beta )}{d\beta ^2}>0\). This implies that the point \(\beta =\frac{1}{2}\) is the point of minima. Also,

    $$\begin{aligned} \left[ \frac{d\digamma (\beta )}{d\beta }\right] _{\beta =0}<0 ~\text {and} ~ \left[ \frac{d\digamma (\beta )}{d\beta }\right] _{\beta =1}>0. \end{aligned}$$
    (6.5)

    Thus, the above discussion implies that the function defined by (6.1) is decreasing in the interval \([0, \frac{1}{2}]\) and increasing in the interval \([\frac{1}{2}, 1]\). Also, the function (6.1) being continuous attains its bounds in the interval [0,1]. Therefore, maximum value of (6.1) takes place at points \(\beta =0, 1\) and minimum value at \(\beta =\frac{1}{2}\). At \(\beta =0, 1\), the value of (6.1) equals to 1 and at \(\beta =\frac{1}{2}\), the value of (6.1) is zero. Therefore, \(0\le {\mathbb {K}}(\Re )\le 1\).

  2. 2.

    Proof is obvious by taking \(\mu _\Re ^c (\curlyvee _i)=1-\mu _\Re (\curlyvee _i)\) in (3.7).

  3. 3.

    Bifurcate the universe of discourse \(\sqcup \) in two parts as follows:

    $$\begin{aligned} \sqcup _1=\{\curlyvee _i\in \sqcup |\mu _{\Re _1} (\curlyvee _i)\ge \mu _{\Re _2}(\curlyvee _i)\};\nonumber \\ \sqcup _2=\{\curlyvee _i\in \sqcup |\mu _{\Re _1} (\curlyvee _i)<\mu _{\Re _2}(\curlyvee _i)\}. \end{aligned}$$
    (6.6)

    If \(\curlyvee _i\in \sqcup _1\), then

    $$\begin{aligned} \mu _{\Re _1\cup \Re _2}(\curlyvee _i)=\max \{\mu _{\Re _1}(\curlyvee _i),\mu _{\Re _2}(\curlyvee _i)\}=\mu _{\Re _1}(\curlyvee _i);\nonumber \\ \mu _{\Re _1\cap \Re _2}(\curlyvee _i)=\min \{\mu _{\Re _1}(\curlyvee _i),\mu _{\Re _2}(\curlyvee _i)\}=\mu _{\Re _2}(\curlyvee _i). \end{aligned}$$
    (6.7)

    and if \(\curlyvee _i\in \sqcup _2\), then

    $$\begin{aligned} \mu _{\Re _1\cup \Re _2}(\curlyvee _i)=\max \{\mu _{\Re _1}(\curlyvee _i),\mu _{\Re _2}(\curlyvee _i)\}=\mu _{\Re _2}(\curlyvee _i);\nonumber \\ \mu _{\Re _1\cap \Re _2}(\curlyvee _i)=\min \{\mu _{\Re _1}(\curlyvee _i),\mu _{\Re _2}(\curlyvee _i)\}=\mu _{\Re _1}(\curlyvee _i). \end{aligned}$$
    (6.8)

    Consider for all \(\curlyvee _i\in \sqcup \),

    $$\begin{aligned} {\mathbb {K}}(\Re _1\cup \Re _2)+{\mathbb {K}}(\Re _1\cap \Re _2)&=\frac{1}{m}\sum _{i=1}^m\left( \frac{\mu _{\Re _1\cup \Re _2} (\curlyvee _i)e^{1-\mu _{\Re _1\cup \Re _2} (\curlyvee _i)}+(1-\mu _{\Re _1\cup \Re _2} (\curlyvee _i))e^{\mu _{\Re _1\cup \Re _2} (\curlyvee _i)}-\sqrt{e}}{1-\sqrt{e}}\right) \nonumber \\&\quad +\frac{1}{m}\sum _{i=1}^m\left( \frac{\mu _{\Re _1\cap \Re _2} (\curlyvee _i)e^{1-\mu _{\Re _1\cap \Re _2} (\curlyvee _i)}+(1-\mu _{\Re _1\cap \Re _2} (\curlyvee _i))e^{\mu _{\Re _1\cap \Re _2} (\curlyvee _i)}-\sqrt{e}}{1-\sqrt{e}}\right) \end{aligned}$$
    (6.9)

    This gives

    $$\begin{aligned}&{\mathbb {K}}(\Re _1\cup \Re _2)+{\mathbb {K}}(\Re _1\cap \Re _2)\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \nonumber \\&\quad =\frac{1}{m}\sum _{\sqcup _1}\left( \frac{\mu _{\Re _1} (\curlyvee _i)e^{1-\mu _{\Re _1} (\curlyvee _i)}+(1-\mu _{\Re _1} (\curlyvee _i))e^{\mu _{\Re _1} (\curlyvee _i)}-\sqrt{e}}{1-\sqrt{e}}\right) \nonumber \\&\quad +\frac{1}{m}\sum _{\sqcup _1}\left( \frac{\mu _{\Re _2} (\curlyvee _i)e^{1-\mu _{\Re _2} (\curlyvee _i)}+(1-\mu _{\Re _2} (\curlyvee _i))e^{\mu _{\Re _2} (\curlyvee _i)}-\sqrt{e}}{1-\sqrt{e}}\right) \nonumber \\&\quad +\frac{1}{m}\sum _{\sqcup _2}\left( \frac{\mu _{\Re _2} (\curlyvee _i)e^{1-\mu _{\Re _2} (\curlyvee _i)}+(1-\mu _{\Re _2} (\curlyvee _i))e^{\mu _{\Re _2} (\curlyvee _i)}-\sqrt{e}}{1-\sqrt{e}}\right) \nonumber \\&\quad +\frac{1}{m}\sum _{\sqcup _2}\left( \frac{\mu _{\Re _1} (\curlyvee _i)e^{1-\mu _{\Re _1} (\curlyvee _i)}+(1-\mu _{\Re _1} (\curlyvee _i))e^{\mu _{\Re _1} (\curlyvee _i)}-\sqrt{e}}{1-\sqrt{e}}\right) \end{aligned}$$
    (6.10)

    On solving, we have

    $$\begin{aligned} {\mathbb {K}}(\Re _1\cup \Re _2)+{\mathbb {K}}(\Re _1\cap \Re _2)={\mathbb {K}}(\Re _1)+{\mathbb {K}}(\Re _2). \end{aligned}$$
    (6.11)

\(\square \)

Appendix ‘B’

  1. 1.

    Let \(\Re _1, \Re _2\) be two FSs such that  \(\Re _1=\Re _2\). Therefore, (5.6) becomes

    $$\begin{aligned} {\mathbb {K}}(\Re _1,\Re _1)&=\frac{1}{m}\sum _{i=1}^m\frac{\mu _{\Re _1}(\curlyvee _i) e^{1-\mu _{\Re _1}(\curlyvee _i)}+(1-\mu _{\Re _1}(\curlyvee _i))e^{\mu _{\Re _1}(\curlyvee _i)}-\sqrt{e}}{2(1-\sqrt{e})}\nonumber \\&\quad +\frac{1}{m}\sum _{i=1}^m\frac{\sqrt{\mu _{\Re _1}(\curlyvee _i)\mu _{\Re _1}(\curlyvee _i)} e^{1-\sqrt{\mu _{\Re _1}(\curlyvee _i)\mu _{\Re _1}(\curlyvee _i)}}+(1-\sqrt{\mu _{\Re _1}(\curlyvee _i)\mu _{\Re _1}(\curlyvee _i)}) e^{\sqrt{\mu _{\Re _1}(\curlyvee _i)\mu _{\Re _1}(\curlyvee _i)}}-\sqrt{e}}{2(1-\sqrt{e})}\nonumber \\ \end{aligned}$$
    (6.12)

    If we consider  \(\Re _1,\Re _2\) to be crisp sets, then \(\mu _{\Re _1} (\curlyvee _i)=\mu _{\Re _2}(\curlyvee _i)=0 ~\text {or}~ 1\). Therefore, (6.12) gives

    $$\begin{aligned} {\mathbb {K}}^{acu} (\Re _1,\Re _1)={\mathbb {K}}^{acu} (\Re _1)=1; \end{aligned}$$
    (6.13)

    which is the maximum value of fuzzy accuracy measure (5.6). Therefore, \({\mathbb {K}}^{acu}(\Re _1,\Re _2)=1\) if \(\mu _{\Re _1} (\curlyvee _i)=\mu _{\Re _2} (\curlyvee _i)=0~ \text {or}~1\) for all \(\curlyvee _i\in U\).

  2. 2.

    Consider a function

    $$\begin{aligned}&{\mathbb {K}}^{acu}(\tau _1,\tau _2)\nonumber \\ {}&\quad =\frac{\tau _1e^{1-\tau _1}+(1-\tau _1)e^{\tau _1}-\sqrt{e}}{2(1-\sqrt{e})}\nonumber \\ {}&\qquad +\frac{(\sqrt{\tau _1\tau _2}) e^{(1-\sqrt{\tau _1\tau _2})}+(1-\sqrt{\tau _1\tau _2})e^{\sqrt{\tau _1\tau _2}}-\sqrt{e}}{2(1-\sqrt{e})} \end{aligned}$$
    (6.14)

    where \(0\le \tau _1,\tau _2\le 1\). Differentiating (6.14) partially with respect to \(\tau _1\) and solving, we get

    $$\begin{aligned}&\frac{\partial {\mathbb {K}}^{acu}(\tau _1,\tau _2)}{\partial \tau _1}=\frac{(1-\tau _1)e^{(1-\tau _1)}-\tau _1e^{\tau _1}}{2(1-\sqrt{e})}\nonumber \\&\quad +\left( \frac{\tau _2}{\tau _1}\right) \left( \frac{(1-\sqrt{\tau _1\tau _2})e^{(1-\sqrt{\tau _1\tau _2})}-(\sqrt{\tau _1\tau _2})e^{\sqrt{\tau _1\tau _2}}}{4(1-\sqrt{e})}\right) . \end{aligned}$$
    (6.15)

    Again, differentiating (6.14) partially with respect to \(\tau _2\), we get

    $$\begin{aligned}&\frac{\partial {\mathbb {K}}^{acu}(\tau _1,\tau _2)}{\partial \tau _2}\nonumber \\ {}&\quad =\left( \frac{\tau _2}{\tau _1}\right) \!\! \left( \frac{(1-\sqrt{\tau _1\tau _2})e^{(1-\sqrt{\tau _1\tau _2})}-(\sqrt{\tau _1\tau _2})e^{\sqrt{\tau _1\tau _2}}}{4(1-\sqrt{e})}\right) . \end{aligned}$$
    (6.16)

    We start with discussing the nature of (6.14) in intervals [.5, 1] and [0,.5]. For this, differentiating (6.14) with respect to \(\tau _1\) and \(\tau _2\), we obtain (6.15) and (6.16). First, we analyze the sign of (6.15) in the interval [.5, 1]. Now, (6.15) may be written as

    $$\begin{aligned}&\frac{\partial {\mathbb {K}}^{acu}(\tau _1,\tau _2)}{\partial \tau _1}=A+B ~~~\text {where} \end{aligned}$$
    (6.17)
    $$\begin{aligned}&A=\frac{(1-\tau _1)e^{(1-\tau _1)}-\tau _1e^{\tau _1}}{2(1-\sqrt{e})} ~\text {and} \end{aligned}$$
    (6.18)
    $$\begin{aligned}&B=\left( \frac{\tau _2}{\tau _1}\right) \!\! \left( \frac{(1-\sqrt{\tau _1\tau _2})e^{(1-\sqrt{\tau _1\tau _2})}-(\sqrt{\tau _1\tau _2})e^{\sqrt{\tau _1\tau _2}}}{4(1-\sqrt{e})}\right) . \end{aligned}$$
    (6.19)

    In interval [.5, 1], \(\tau _1\ge (1-\tau _1)\). This implies \(\tau _1e^{\tau _1}\ge (1-\tau _1)e^{(1-\tau _1)}\). Also, \((1-\sqrt{e})<0\). From these arguments, we may conclude that \(A\ge 0\). Similarly, for \(.5\le \tau _1,\tau _2\le 1\), \((1-\sqrt{\tau _1\tau _2})\le (\sqrt{\tau _1\tau _2})\),   which gives   \((1-\sqrt{\tau _1\tau _2})e^{(1-\sqrt{\tau _1\tau _2})}\le (\sqrt{\tau _1\tau _2})e^{\sqrt{\tau _1\tau _2}}\). This assertion together with \((1-\sqrt{e})<0\) implies that  \(B\ge 0\). Thus, we may conclude that  \(\displaystyle \frac{\partial {\mathbb {K}}^{acu}(\tau _1,\tau _2)}{\partial \tau _1}\ge 0\) in the interval [.5, 1]. From the fact  \(B\ge 0\), we may also infer that  \(\displaystyle \frac{\partial {\mathbb {K}}^{acu}(\tau _1,\tau _2)}{\partial \tau _2}\ge 0\). From the above discussion, it may be concluded that the function defined by (6.14) is increasing in interval [.5, 1]. Similarly, it can be established that the function (6.14) is decreasing in the interval [0,.5]. Now, we prove the required property. Since, \(\Re _1\subseteq \Re _2\subseteq \Re _3\), this gives  \(0\le \mu _{\Re _1}(\curlyvee _i)\le \mu _{\Re _2}(\curlyvee _i)\le \mu _{\Re _3}(\curlyvee _i)\le 1\). Therefore,  \(\mu _{\Re _1}(\curlyvee _i)\ge .5\),  \((\mu _{\Re _2}(\curlyvee _i)-\mu _{\Re _1}(\curlyvee _i))\le (\mu _{\Re _3}(\curlyvee _i)-\mu _{\Re _1}(\curlyvee _i))\) and the fact that function defined by (6.14) is increasing in the interval [.5, 1] together implies that  \({\mathbb {K}}^{acu} (\Re _1, \Re _2)\le {\mathbb {K}}^{acu}(\Re _1, \Re _3)\). Similarly.second part of theorem may be proved.

  3. 3.

    The proof of third property is straightforward.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R. Novel exponential fuzzy information measures. Soft Comput 27, 1331–1346 (2023). https://doi.org/10.1007/s00500-022-07632-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07632-5

Keywords

Navigation