Skip to main content
Log in

Modified hybrid combination synchronization of chaotic fractional order systems

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The paper investigates a new hybrid synchronization called modified hybrid synchronization (MHS) via the active control technique. Using the active control technique, stable controllers which enable the realization of the coexistence of complete synchronization and anti-synchronization in four identical fractional order chaotic systems were derived. Numerical simulations were presented to confirm the effectiveness of the analytical technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

There were no data associated with this study.

References

  • Adelakun O, Ogunjo S, Fuwape I (2017) Dynamics of delayed memristive systems in combination chaotic circuits. Advances in memristors, memristive devices and systems. Springer International Publishing, pp 477–492

  • Bhalekar S (2014) Synchronization of incommensurate non-identical fractional order chaotic systems using active control. Eur Phys J Spec Top 223:1495–1508

    Article  Google Scholar 

  • Bhalekar S, Daftardar-Gejji V (2010) Synchronization of different fractional order chaotic systems using active control. Commun Nonlinear Sci Numer Simul 15(11):3536–3546

    Article  Google Scholar 

  • Čermák J, Nechvátal L (2019) Stability and chaos in the fractional chen system. Chaos Solit Fract 125:24–33

    Article  MathSciNet  Google Scholar 

  • Chen D, Zhang R, Sprott JC, Chen H, Ma X (2012) Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. Chaos: An Interdisciplinary. J Nonlinear Sci 22(2):023130

    MATH  Google Scholar 

  • Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 09(07):1465–1466

    Article  MathSciNet  Google Scholar 

  • Chen WC (2008) Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solit Fract 36(5):1305–1314

    Article  Google Scholar 

  • Chen Y, Petras I, Xue D (2009) Fractional order control—a tutorial, pp 1397–1411

  • Deng W, Li C (2005) Synchronization of chaotic fractional chen system. J Phys Soc Jpn 74:1645–1648

    Article  Google Scholar 

  • Femat R, Solís-Perales G (2002) Synchronization of chaotic systems with different order. Phys Rev E 65:65:036226

    Article  Google Scholar 

  • Feng CF, Tan YR, Wang YH, Yang HJ (2017) Active backstepping control of combined projective synchronization among different nonlinear systems. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije 58(3):295–301

  • Gutiérrez RE, Rosário JM, Tenreiro Machado J (2010) Fractional order calculus: basic concepts and engineering applications. Math Probl Eng 2010:375858

    Article  Google Scholar 

  • Hegazi AS, Matouk AE (2011) Dynamical behaviors and synchronization in the fractional order hyperchaotic chen system. Appl Math Lett 24(11):1938–1944

    Article  MathSciNet  Google Scholar 

  • Khan A, Bhat MA (2017) Multi-switching combination combination synchronization of non-identical fractional-order chaotic systems. Math Methods Appl Sci 1–14 (Mma.4416)

  • Khan A, Chaudhary H (2020) Hybrid projective combination-combination synchronization in non-identical hyperchaotic systems using adaptive control. Arabian J Math 9(3):597–611

    Article  MathSciNet  Google Scholar 

  • Khan A, Nigar U (2019) Adaptive hybrid complex projective combination-combination synchronization in non-identical hyperchaotic complex systems. Int J Dyn Control 7(4):1404–1418

    Article  MathSciNet  Google Scholar 

  • Khan T, Chaudhary H (2021) An investigation on parameter identification method of controlling chaos in generalized lotka-volterra systems via hybrid projective difference combination synchronization technique. In: Advances in mechanical engineering. Springer, pp 547–558

  • Kloeden PE (2004) Synchronization of discrete time dynamical systems. J Differ Equ Appl 10(13–15):1133–1138

  • Li B, Zhou X, Wang Y (2019) Combination synchronization of three different fractional-order delayed chaotic systems. Complexity

  • Li C, Chen G (2004) Chaos in the fractional order Chen system and its control. Chaos Solit Fract 22(3):549–554

    Article  Google Scholar 

  • Liu D (2008) Synchronization of discrete chaotic dynamical systems using active control, pp 56–59

  • Liu Y (2016) Chaotic synchronization between linearly coupled discrete fractional hénon maps. Indian J Phys 90(3):313–317

    Article  Google Scholar 

  • Long C, Yue-Dong S, De-Shi W (2010) Adaptive generalized synchronization between chen system adn a multiscroll chaotic system. Chin Phys B 19(10):100503

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Article  MathSciNet  Google Scholar 

  • Lu JG (2005) Chaotic dynamics and synchronization of fractional-order arneodo’s systems. Chaos Solit Fract 26(4):1125–1133

  • Lu JG, Chen G (2006) A note on the fractional-order chen system. Chaos Solit Fract 27(3):685–688

    Article  Google Scholar 

  • Ma Z, Liu Z, Zhang G (2007) Generalized synchronization of discrete systems. Appl Math Mech 28(5):609–614

  • Mahmoud GM, Abed-Elhameed TM, Ahmed ME (2016) Generalization of combination combination synchronization of chaotic n-dimensional fractional-order dynamical systems. Nonlinear Dyn 83(4):1885–1893

    Article  MathSciNet  Google Scholar 

  • Matouk A, Elsadany A (2014) Achieving synchronization between the fractional-order hyperchaotic novel and chen systems via a new nonlinear control technique. Appl Math Lett 29:30–35

    Article  MathSciNet  Google Scholar 

  • Meng F, Zeng X, Wang Z (2018) Impulsive anti-synchronization control for fractional-order chaotic circuit with memristor. Indian J Phys. https://doi.org/10.1007/s12648-019-01386-x (in press)

  • Motallebzadeh F, Motlagh MRJ, Cherati ZR (2012) Synchronization of different-order chaotic systems: adaptive active vs. optimal control. Commun Nonlinear Sci Numer Simul 17(9):3643 – 3657

  • Ogunjo S, Ojo K, Fuwape I (2017) Comparison of three different synchronization schemes for fractional chaotic systems. Springer International Publishing, pp 471–495

  • Ogunjo ST (2013) Increased and reduced order synchronization of 2d and 3d dynamical systems. Int J Nonlinear Sci 16(2):105–112

    MathSciNet  MATH  Google Scholar 

  • Ogunjo ST, Ojo KS, Fuwape IA (2018) Multiswitching synchronization between chaotic fractional order systems of different dimensions. In: Mathematical techniques of fractional order systems. Elsevier, pp 451–473

  • Ojo K, Njah A, Ogunjo S (2013) Comparison of backstepping and modified active control in projective synchronization of chaos in an extended bonhoffer van der pol oscillator. Pramana 80(5):825–835

    Article  Google Scholar 

  • Ojo K, Njah A, Ogunjo S, Olusola O (2014) Reduced order function projective combination synchronization of three josephson junctions using backstepping technique. Nonlinear Dyn Syst Theory 14(2):119

    MathSciNet  MATH  Google Scholar 

  • Ojo K, Njah A, Olusola O, Omeike M (2014) Generalized reduced-order hybrid combination synchronization of three josephson junctions via backstepping technique. Nonlinear Dyn 77(3):583–595

    Article  MathSciNet  Google Scholar 

  • Ojo K, Njah AN, Ogunjo ST, Olusola OI (2014) Reduced order hybrid function projective combination synchronization of three josephson junctions. Arch Control Sci 24(1):99–113

    Article  MathSciNet  Google Scholar 

  • Ojo K, Ogunjo S (2012) Synchronization of 4d rabinovich hyperchaotic system for secure communication. J Nigerian Assoc Math Phys 21:35–40

    Google Scholar 

  • Ojo K, Ogunjo S, Williams O (2013) Mixed tracking and projective synchronization of 5d hyperchaotic system using active control. Cybern Phys 2(1):31–36

    Google Scholar 

  • Ojo KS, Ogunjo ST, Njah AN, Fuwape IA (2014) Increased-order generalized synchronization of chaotic and hyperchaotic systems. Pramana 1–13

  • Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824

    Article  MathSciNet  Google Scholar 

  • Peng G (2007) Synchronization of fractional order chaotic systems. Phys Lett A 363(5–6):426–432

    Article  MathSciNet  Google Scholar 

  • Petras I (2011) Fractional-order nonlinear systems: modeling. analysis and simulation. Springer Science & Business Media

  • Prajapati N, Khan A, Khattar D (2018) On multi switching compound synchronization of non identical chaotic systems. Chin J Phys 56(4):1656–1666

    Article  MathSciNet  Google Scholar 

  • Rajchakit G, Pratap A, Raja R, Cao J, Alzabut J, Huang C (2019) Hybrid control scheme for projective lag synchronization of riemann-liouville sense fractional order memristive bam neuralnetworks with mixed delays. Mathematics 7(8):759

    Article  Google Scholar 

  • Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  • Runzi L, Yinglan W, Shucheng D (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos: an Interdisciplinary. J Nonlinear Sci 21(4):043114

    MATH  Google Scholar 

  • Strogatz SH (2000) Nonlinear dynamics and chaos: applications to physics, biology, chemistry, and engineering: with applications to physics. biology, chemistry and engineering

  • Tavazoei MS, Haeri M (2008) Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387(1):57–70

    Article  Google Scholar 

  • Xi H, Li Y, Huang X (2015) Adaptive function projective combination synchronization of three different fractional-order chaotic systems. Optik 126(24):5346–5349

    Article  Google Scholar 

  • Yadav VK, Prasad G, Srivastava M, Das S (2019) Combination-combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control. Int J Dyn Control 7(1):330–340

    Article  MathSciNet  Google Scholar 

  • Yang C, Cai H, Zhou P (2016) Compound generalized function projective synchronization for fractional-order chaotic systems. Disc Dyn Nature Soc

  • Zhou P, Zhu P (2017) A practical synchronization approach for fractional-order chaotic systems. Nonlinear Dyn 89(3):1719–1726

    Article  MathSciNet  Google Scholar 

  • Zhou P, Zhu W (2011) Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal Real World Appl 12(2):811–816

    Article  MathSciNet  Google Scholar 

  • Zhu H, Zhou S, He Z (2009) Chaos synchronization of the fractional-order chen’s system. Chaos Solit Fract 41(5):2733–2740

Download references

Funding

Authors did not receive any funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel T. Ogunjo.

Ethics declarations

Conflict of Interest

The authors hereby declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojo, K.S., Ogunjo, S.T. & Fuwape, I.A. Modified hybrid combination synchronization of chaotic fractional order systems. Soft Comput 26, 11865–11872 (2022). https://doi.org/10.1007/s00500-022-06987-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-06987-z

Keywords

Navigation