Skip to main content

Advertisement

Log in

Past present future: a new human-based algorithm for stochastic optimization

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Past present future (PPF) is a new stochastic optimization algorithm inspired by the phenomena of the way an individual learns from a successful person in society. PPF is based on the concept of “future improvement of a person’s life depending on his/her past experience and present work.” The influence of successful persons also affects the improvement of the future life of an individual. This work develops a mathematical model for PPF following the above facts. In this new algorithm, the population is divided into subpopulations and a switching mechanism is followed among the subpopulations to track the change in optimal positions of an individual thereby accelerating the convergence rate. In addition, this switching mechanism also prevents pre-mature convergence. PPF was found to possess low computational complexity with fast convergence characteristics. The proposed PPF is compared with 41 up-to-date meta-heuristic algorithms taking an extensive set of benchmark functions to verify the efficiency. In addition, five classical engineering design problems are simulated to estimate the efficacy of the PPF algorithm in optimizing engineering problems. The results confirm the superior performance of the proposed algorithm to get the optimal solution with less iteration and have shown the best competitive performance compared to all other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdullah JM, Rashid TA (2019) Fitness dependent optimizer: inspired by the bee swarming reproductive process. Digit Object Identifier. https://doi.org/10.1109/ACCESS.2019.2907012

    Article  Google Scholar 

  • Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  • Al Sudani ZA, Salih SQ, Yaseen ZM (2019) Development of multivariate adaptive regression spline integrated with differential evolution model for stream flow simulation. J Hydrol 573:1–15

    Google Scholar 

  • Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

    Google Scholar 

  • Al-Musawi AA, Alwanas AAH, Salih SQ (2019) Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model. Eng Comput. https://doi.org/10.1007/s00366-018-0681-8

    Article  Google Scholar 

  • Arora S, Singh S (2018) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734. https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  • Askari Q, Saeed M, Younas I (2020a) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113702

    Article  Google Scholar 

  • Askari Q, Younas I, Saeed M (2020b) Political optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  • Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–2

    Google Scholar 

  • Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. IEEE, pp 4661–466

  • Basturk B (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, Indianapolis, IN, USA

  • Bonabeau E, Dorigo MM, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Santa Fe Institute studies in the sciences of complexity series. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Chou JS, Nguyen NM (2020) FBI inspired meta-optimization. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106339

    Article  Google Scholar 

  • Chou JS, Truong DN (2020) A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl Math Comput 389:125535. https://doi.org/10.1016/j.amc.2020.125535

    Article  MathSciNet  MATH  Google Scholar 

  • Chu SA, Tsai PW, Pan JS (2006) Cat swarm optimization. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 854–858

  • Coello CA (2005). An introduction to evolutionary algorithms and their applications. In: International symposium and school on advance distributed systems. Springer, Berlin, pp 425–442. https://doi.org/10.1007/11533962_39

  • Dai C, Zhu Y, Chen W (2006) Seeker optimization algorithm. In: International conference on computational and information science. Springer, Berlin, pp 167–176

  • Das AK, Pratihar DK (2019) A new bobono optimizer (BO) for real-parameter optimization. In: proceedings of 2019 IEEE resign 10 symposium (TENSYMP)

  • Derrac J, Garcıa S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18

    Google Scholar 

  • Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl Based Syst 165:169–196. https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  • Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Google Scholar 

  • Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: Advances in natural computation. Springer, pp 264–273

  • Eita MA, Fahmy MM (2014) Group counseling optimization. Appl Soft Comput 22:585–604

    Google Scholar 

  • Emami H, Derakhshan F (2015) Election algorithm: a new socio-politically inspired strategy. AI Commun 28(3):591–603

    MathSciNet  MATH  Google Scholar 

  • Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 7:106–111

    Google Scholar 

  • Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  • Faramarzi A, Heidarinejad M, Stephens B (2019) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  • Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  • Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027

  • Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetic. Prog Electromag Res 77:425–491

    Google Scholar 

  • Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    MathSciNet  MATH  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76(2):60–68

    Google Scholar 

  • Ghasemi M, Davoudkhani IF, Akbari E, Rahimnejad A, Ghavidel S (2020) A novel and effective optimization algorithm for global optimization and its engineering applications: turbulent flow of water-based optimization (TFWO). Eng Appl Artif Intell 92:103666. https://doi.org/10.1016/j.engappai.2020.103666

    Article  Google Scholar 

  • Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 19:177–187

    Google Scholar 

  • Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206

    MATH  Google Scholar 

  • Goldberg DE, Holland JH (1998) Genetic algorithms and machine learning. Mach Learn 3:95–99

    Google Scholar 

  • Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 282–291

  • Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  • Hassanien AE, Emary E (2018) Swarm intelligence: principles, advances, and applications. CRC Press, Boca Raton

    Google Scholar 

  • Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    MathSciNet  Google Scholar 

  • He S, Wu QH, Saunders J (2009) Group search optimizer: an optimization algorithm inspired by animal searching behaviour. IEEE Trans Evol Comput 13(5):973–990. https://doi.org/10.1109/TEVC.2009.2011992

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  • Huan TT, Kulkarni AJ, Kanesan J, Huang CJ, Abraham A (2017) Ideology algorithm: a socio-inspired optimization methodology. Neural Comput Appl 28(1):845–876. https://doi.org/10.1007/s00521-016-2379-4

    Article  Google Scholar 

  • Hussain S, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333. https://doi.org/10.1016/j.asoc.2015.07.028

    Article  Google Scholar 

  • Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175

    Google Scholar 

  • Javid AA (2011) Anarchic society optimization: a human-inspired method. In: Evolutionary computation, CEC 2011 IEEE congress, IEEE, New Orleans USA, pp 2586–2592

  • Kashan AH (2009) League championship algorithm: a new algorithm for numerical function optimization. In: 2009 international conference of soft computing and pattern recognition. IEEE, pp 43–48

  • Kaur S, Awasthi LK, Sangal AL, Dhiman D (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541. https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  • Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Google Scholar 

  • Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta 213:267–289

    MATH  Google Scholar 

  • Kaveh A (2014) Colliding bodies optimization. In: Advances in metaheuristic algorithms for optimal design of structures. Springer, pp 195–232

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, pp 1942–1948

  • Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338. https://doi.org/10.1016/j.eswa.2020.113338

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simmulated annealing. Science 220:671–680

    MathSciNet  MATH  Google Scholar 

  • Koza JR, Rice JP (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  • Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self supervised learning behavior. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE, pp 1396–1400

  • Kumar M, Kulkarni AJ, Satapathy SC (2017) Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2017.10.052

    Article  Google Scholar 

  • Kuo HC, Lin CH (2013) Cultural evolution algorithm for global optimizations and its applications. J Appl Res Technol 11(4):510–522

    Google Scholar 

  • Li S, Chen H, Wang M (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  • Liu ZZ, Chu DH, Song C, Xue X, Lu BY (2016) Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition. Inf Sci 326:315–333

    Google Scholar 

  • Meirelles G, Brentan B, Izquierdo J, Luvizotto E (2020) Grand tour algorithm: novel swarm-based optimization for high-dimensional problems. Processes 8:980. https://doi.org/10.3390/pr8080980

    Article  Google Scholar 

  • Mirjalili S (2015a) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  • Mirjalili S (2015b) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  • Mirjalili S (2016) (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2015) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  • Mirjalili S (2015c) Moth-flame optimization algorithm: a novel nature-inspired meta-heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  • Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv 1208.2214

  • Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161–185

    Google Scholar 

  • Mohamed AA, Hassan SA, Hemeida AM, Alkhalaf S, Mahmoud MM, Eldin AM (2019) Parasitism-predation algorithm (PPA): a novel approach for feature selection. Ain Shams Eng J 11(2):293–308. https://doi.org/10.1016/j.asej.2019.10.004

    Article  Google Scholar 

  • Moosavi SHS, Bardsiri VK (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intell 86:165–181

    Google Scholar 

  • Moosavian N, Roodsari BK (2013) Soccer league competition algorithm, a new method for solving systems of nonlinear equations. Int J Intell Sci 4(01):7. https://doi.org/10.4236/ijis.2014.41002

    Article  Google Scholar 

  • Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings. American Institute of Physics, pp 162–173

  • Naik A, Satapathy SC (2021) A comparative study of social group optimization with a few recent optimization algorithms. Complex Intell Syst 7(1):249–295

    Google Scholar 

  • Naik A, Satapathy SC, Ashour AS, Dey N (2018) Social group optimization for global optimization of multimodal functions and data clustering problems. Neural Comput Appl 30(1):271–287

    Google Scholar 

  • Naik A, Parvathi K, Satapathy SC, Nayak R, Panda BS (2013) QoS multicast routing using teaching learning based optimization. In: Proceedings of international conference on advances in computing. Springer, New Delhi, pp 49–55. https://doi.org/10.1007/978-81-322-0740-5_6

  • Naik A, Satapathy SC, Abraham A (2020) Modified social group optimization—a meta-heuristic algorithm to solve short-term hydrothermal scheduling. Appl Soft Comput 95:106524. https://doi.org/10.1016/j.asoc.2020.106524

    Article  Google Scholar 

  • Nematollahi AF, Rahiminejad A, Vahidi B (2017) A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Appl Soft Comput 59:596–621

    Google Scholar 

  • Nematollahi AF, Rahiminejad A, Vahidi B (2020) A novel meta-heuristic optimization method based on golden ratio in nature. Soft Comput 24:1117–1151. https://doi.org/10.1007/s00500-019-03949-w

    Article  Google Scholar 

  • Nickerson JV (2013) Human-based evolutionary computing. In: Handbook of human computation. Springer, New York, pp 641–648. https://doi.org/10.1007/978-1-4614-8806-4_51

  • Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    Google Scholar 

  • Rabanal P, Rodríguez I, Rubio F (2007) Using river formation dynamics to design heuristic algorithms. In: International conference on unconventional computation 2007 Aug 13. Springer, Berlin, pp 163–177

  • Ramezani F, Lotfi S (2013) Social-based algorithm (SBA). Appl Soft Comput 13:2837–2856

    Google Scholar 

  • Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    MATH  Google Scholar 

  • Rechenberg I (1973) Evolution strategy: optimization of technical systems by means of biological evolution. Fromman-Holzboog Stuttgart 104:15–16

    Google Scholar 

  • Rizk-Allah RM, Hassanien AE (2019) A movable damped wave algorithm for solving global optimization problems. Evol Intel 12:49–72. https://doi.org/10.1007/s12065-018-0187-8

    Article  Google Scholar 

  • Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  • Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Google Scholar 

  • Satapathy SC, Naik A (2016) Social group optimization (SGO): a new population evolutionary optimization technique. Complex Intel Syst 2(3):173–203

    Google Scholar 

  • Satapathy SC, Naik A, Parvathi K (2013) Rough set and teaching learning based optimization technique for optimal features selection. Cent Eur J Comput Sci 3(1):27–42. https://doi.org/10.2478/s13537-013-0102-4

    Article  Google Scholar 

  • Satapathy SC, Naik A, Parvathi K (2012) 0–1 integer programming for generation maintenance scheduling in power systems based on teaching learning based optimization (TLBO). In: International conference on contemporary computing. Springer, Berlin, pp 53–63. https://doi.org/10.1007/978-3-642-32129-0_11

  • Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140

    Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  • Tamura K, Yasuda K (2011) Spiral dynamics inspired optimization. J Adv Comput Intell Intell Inform 15(8):1116–1122

    Google Scholar 

  • Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence. Springer, Berlin, pp 355–364.

  • Tang R, Fong S, Yang XS, Deb S (2012) Wolf search algorithm with ephemeral memory. In: Seventh international conference on digital information management (ICDIM 2012). IEEE, pp 165–172

  • Teodorovic D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. Advanced OR AI Methods Transp 13(51):60

    Google Scholar 

  • Vahidi B, Foroughi Nematolahi A (2020) Physical and physic-chemical based optimization methods: a review. J Soft Comput Civ Eng 3(4):12–27. https://doi.org/10.22115/Scce.2020.214959.1161

    Article  Google Scholar 

  • Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the 2003 international conference on information and knowledge engineering, pp 255–261

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  • Xiong N, Molina D, Ortiz ML, Herrera F (2015) A walk into metaheuristics for engineering optimization: principles, methods and recent trends. Int J Comput Intell Syst 8:606–636. https://doi.org/10.1080/18756891.2015.1046324

    Article  Google Scholar 

  • Xu Y, Cui Z, Zeng J (2010) Social emotional optimization algorithm for nonlinear constrained optimization problems. In: swarm, evolutionary, and memetic computing. Springer, pp 583–590

  • Yadav A (2019) AEFA: Artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108. https://doi.org/10.1016/j.swevo.2019.03.013

    Article  Google Scholar 

  • Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing. IEEE, pp 210–214

  • Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization. Springer, Berlin, pp 65–74

  • Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, pp 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Google Scholar 

  • Zhao W, Wang L, Zhang Z (2019) A novel atom search optimization for dispersion coefficient estimation in groundwater. Futur Gener Comput Syst 91:601–610. https://doi.org/10.1016/j.future.2018.05.037

    Article  Google Scholar 

Download references

Funding

This research has no funding by any organization or individual.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed and all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Suresh Chandra Satapathy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Tables 22, 23 and 24.

Table 22 Unimodal benchmark functions
Table 23 Multimodal benchmark functions
Table 24 Fixed-dimensional multimodal benchmark functions

Appendix B

2.1 The welded beam design problem

$$ {\text{Min}}\;f\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = 1.10471x_{1}^{2} x_{2} + 0.04811x_{3} x_{4} \left( {14.0 + x_{2} } \right) $$

Subject to:

$$ \begin{aligned} & g_{1} \left( X \right) = x_{1} - x_{4} \le 0 \\ & g_{2} \left( X \right) = \delta - 0.25 \le 0 \\ & g_{3} \left( X \right) = \tau - 13600 \le 0 \\ & g_{4} \left( X \right) = \rho - 30000 \le 0 \\ & g_{5} \left( X \right) = 0.10471x_{1}^{2} + 0.04811x_{3} x_{4} \left( {14.0 + x_{2} } \right) - 5 \le 0 \\ & g_{7} \left( X \right) = 6000 - F \le 0 \\ \end{aligned} $$

where the variables satisfy \(0.1 \le x_{1}\), \(x_{4} \le 2.0\) and \(0.1 \le x_{2}\), \(x_{3} \le 10\).

$$ \begin{aligned} & \rho = 50,400/x_{3}^{2} x_{4} \\ & Q = 6000(14 + x_{2} /2) \\ & D = \frac{1}{2}\sqrt {x_{2}^{2} + \left( {x_{1} + x_{3} } \right)^{2} } \beta = \frac{QD}{J} \\ & J = \sqrt 2 x_{1} x_{2} (x_{2}^{2} /6 + \left( {x_{1} + x_{3} } \right)^{2} /2) \\ & \delta = 65,856/3000x_{3}^{3} x_{4} \alpha = 6000/\left( {\sqrt 2 x_{1} x_{2} } \right) \\ & \tau = \sqrt {\alpha^{2} + \frac{{\alpha \beta x_{2} }}{D} + \beta^{2} } \\ & F = 0.61423 \times 10^{6} \frac{{x_{4}^{3} x_{3} }}{6}\left( {1 - \frac{{x_{3} \sqrt {30/48} }}{28}} \right) \\ \end{aligned} $$

2.2 Tension/compression spring design problem

\({\text{Min}}\;f\left( {x_{1} ,x_{2} ,x_{3} } \right) = \left( {x_{3} + 2} \right)x_{1}^{2} x_{2}\).

Subject to:

$$ \begin{aligned} & g_{1} \left( X \right) = 1 - \frac{{x_{2}^{2} x_{3} }}{{71785x_{1}^{4} }} \le 0 \\ & g_{2} \left( X \right) = \frac{{x_{2} \left( {4x_{2} - x_{1} } \right)}}{{12566x_{1}^{3} \left( {x_{2} - x_{1} } \right)}} + \frac{1}{{5108x_{1}^{2} }} - 1 \le 0 \\ & g_{3} \left( X \right) = 1 - \frac{{140.45x_{1} }}{{x_{2}^{2} x_{3} }} \le 0 \\ & g_{4} \left( X \right) = \frac{{2\left( {x_{2} + x_{1} } \right)}}{3} - 1 \le 0 \\ \end{aligned} $$

where the variables satisfy \(0.05 \le x_{1} \le 2\), \(0.25 \le x_{2} \le 1.3\) and \(2 \le x_{3} \le 15.\)

2.3 Gear train design problem

$$ \begin{aligned} & {\text{Min}}\;f\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = \left( {\frac{1}{6.931} - \frac{{x_{3} x_{2} }}{{x_{1} x_{4} }}} \right)^{2} \\ & {\text{Variable}}\;{\text{range}}\;12 \le x_{1} ,x_{2} ,x_{3} ,x_{4} \le 60 \\ \end{aligned} $$

2.4 The three-bar truss design problem

\({\text{Min}}\;f\left( {x_{1} ,x_{2} } \right) = \left( {2\sqrt 2 x_{1} + x_{2} } \right)*l\)

Subject to:

$$ \begin{aligned} & g_{1} \left( X \right) = \frac{{\sqrt 2 x_{1} + x_{2} }}{{\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} }}P - \sigma \le 0 \\ & g_{2} \left( X \right) = \frac{{x_{2} }}{{\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} }}P - \sigma \le 0 \\ & g_{3} \left( X \right) = \frac{1}{{\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} }}P - \sigma \le 0 \\ \end{aligned} $$

Variable range \(0 \le x_{1} ,x_{2} \le 1\)

Where l = 100 cm. P = 2 KN/cm2 \(\sigma = 2\;{\text{KN/cm}}^{2}\).

2.5 Cantilever beam design problem

\({\text{Min}}\;f\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} } \right) = 0.6224\left( {x_{1} + x_{2} + x_{3} + x_{4} + x_{5} } \right).\)

Subject to:

$$ g_{1} \left( X \right) = \frac{61}{{x_{1}^{3} }} + \frac{27}{{x_{2}^{3} }} + \frac{19}{{x_{3}^{3} }} + \frac{7}{{x_{4}^{3} }} + \frac{1}{{x_{5}^{3} }} - 1 \le 0 $$

Variable range \(0.01 \le x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} \le 100\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, A., Satapathy, S.C. Past present future: a new human-based algorithm for stochastic optimization. Soft Comput 25, 12915–12976 (2021). https://doi.org/10.1007/s00500-021-06229-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06229-8

Keywords

Navigation