Skip to main content
Log in

A duality for two-sorted lattices

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A series of representation theorems (some of which discovered very recently) present an alternative view of many classes of algebras related to non-classical logics (e.g. bilattices, semi-De Morgan, Nelson and quasi-Nelson algebras) as two-sorted algebras in the sense of many-sorted universal algebra. In all the above-mentioned examples, we are in fact dealing with a pair of lattices related by two meet-preserving maps. We use this insight to develop a Priestley-style duality for such structures, mainly building on the duality for meet-semilattices of G. Bezhanishvili and R. Jansana. Our approach simplifies all the existing dualities for these algebras and is applicable more generally; in particular, we show how it specialises to the class of quasi-Nelson algebras, which has not yet been studied from a duality point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The notation \(\langle \mathbf {L} _+, \mathbf {L} _-, n, p \rangle \) originates in the literature on bilattices and bitopology (Jakl et al. 2016), in which \(\mathbf {L} _+\) and \(\mathbf {L} _-\) are viewed as truth value spaces corresponding to (resp.) positive and negative information concerning, say, a proposition. Thus, the map n (which has the lattice \(L_+\) as source and \(L_-\) as target) allows one to “translate” positive information into negative, and likewise, p provides a translation the other way round.

  2. In classical propositional logic, \(\lnot (\lnot x \rightarrow \lnot y)\) is equivalent to \(\lnot (y\rightarrow x)\), hence our notation \(x \not \leftarrow y\).

  3. Notice that \(\mathbf {B} _-\) has \(\vee \) as meet (whose residuum is \(\not \leftarrow \)) and \(\wedge \) as join.

  4. As observed in Rivieccio and Spinks (2019) and Rivieccio and Spinks (2020), conditions (i)–(iii) entail that p also preserves the Heyting implication.

  5. Abstractly, a Priestley space is defined as a compact ordered topological space \(\langle X, \tau , \le \rangle \) such that, for all \(x,y \in X\), if \(x \not \le y\), then there is a clopen up-set \(U \subseteq X\) with \(x \in U\) and \(y \notin U\). It follows that \(\langle X, \tau \rangle \) is a Stone space.

  6. This is nevertheless a choice, different, for example, from the one made in Jakl et al. (2016, Definition 3.3).

  7. Our formulation of (ii).1 is different from the one in Bezhanishvili and Jansana (2011, Definition 6.2), but the two are easily seen to be equivalent in our context. Also, we always require \(R_n\) and \(R_p\) to be total (Bezhanishvili and Jansana 2011, Definition 6.11) because our maps np preserve all lattice bounds.

References

  • Arieli O, Avron A (1996) Reasoning with logical bilattices. J Log Lang Inf 5(1):25–63

    Article  MathSciNet  MATH  Google Scholar 

  • Balbes R, Dwinger P (1974) Distributive lattices. University of Missouri Press, Columbia

    MATH  Google Scholar 

  • Bezhanishvili G, Jansana R (2011) Priestley style duality for distributive meet-semilattices. Stud Log 98(1–2):83–122

    Article  MathSciNet  MATH  Google Scholar 

  • Bezhanishvili G, Jansana R (2013) Esakia style duality for implicative semilattices. Appl Categ Struct 21(2):181–208

    Article  MathSciNet  MATH  Google Scholar 

  • Birkhoff G, Lipson JD (1970) Heterogeneous algebras. J Comb Theory 8:115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Blackburn P, de Rijke M, Venema Y (2001) Modal logic. Number 53 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge

    Google Scholar 

  • Bou F, Jansana R, Rivieccio U (2011) Varieties of interlaced bilattices. Algebra Univ 66(1):115–141

    Article  MathSciNet  MATH  Google Scholar 

  • Celani SA (1999) Distributive lattices with a negation operator. Math Log Q 45(2):207–218

    Article  MathSciNet  MATH  Google Scholar 

  • Cignoli R (1986) The class of Kleene algebras satisfying an interpolation property and Nelson algebras. Algebra Univ 23(3):262–292

    Article  MathSciNet  MATH  Google Scholar 

  • Cignoli R, Lafalce S, Petrovich A (1991) Remarks on Priestley duality for distributive lattices. Order 8(3):299–315

    Article  MathSciNet  MATH  Google Scholar 

  • Cornish WH, Fowler PR (1977) Coproducts of De Morgan algebras. Bull Austral Math Soc 16(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Davey BA (2013) The product representation theorem for interlaced pre-bilattices: some historical remarks. Algebra Univers 70(4):403–409

    Article  MathSciNet  MATH  Google Scholar 

  • Esakia LL (1974) Topological Kripke models. Sov Math Dokl 15:147–151

    MATH  Google Scholar 

  • Frittella S, Greco G, Kurz A, Palmigiano A (2016) Multi-type display calculus for propositional dynamic logic. J Log Comput 26(6):2067–2104

    Article  MathSciNet  MATH  Google Scholar 

  • Frittella S, Greco G, Kurz A, Palmigiano A, Sikimić V (2014) Multi-type sequent calculi. In: Zawidski M, Indrzejczak A, Kaczmarek J (eds) Proceedings of trends in logic XIII (Lodz, Poland, 2–5 July 2014), volume 13. Lodz University Press, Lodz, pp 81–93

    Google Scholar 

  • Frittella S, Greco G, Kurz A, Palmigiano A, Sikimić V (2016) Multi-type display calculus for dynamic epistemic logic. J Log Comput 26(6):2067–2104

    Article  MathSciNet  MATH  Google Scholar 

  • Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated Lattices: an algebraic glimpse at substructural logics, Studies in Logic and the Foundations of Mathematics, vol 151. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Gehrke M, Van Gool SJ (2014) Distributive envelopes and topological duality for lattices via canonical extensions. Order 31(3):435–461

    Article  MathSciNet  MATH  Google Scholar 

  • Ginsberg ML (1988) Multivalued logics: a uniform approach to inference in artificial intelligence. Comput Intell 4:265–316

    Article  Google Scholar 

  • Greco G, Palmigiano A (2017) Lattice logic properly displayed. In: Kennedy J, de Queiroz R (eds) Proceedings of the 24th workshop on logic language, information and computation (WoLLIC), volume LNCS 10388. Springer, Berlin, pp 153–169

    Chapter  Google Scholar 

  • Greco G, Palmigiano A (Submitted) Linear logic properly displayed. arXiv:1611.04181

  • Greco G, Liang F, Moshier MA, Palmigiano A (2017) Multi-type display calculus for semi De Morgan logic. In: WoLLIC, logic, language, information, and computation, pp 199–215

  • Greco G, Liang F, Palmigiano A, Rivieccio U (2019) Bilattice logic properly displayed. Fuzzy Sets Syst 363:138–155

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos PR (1962) Algebraic logic. Chelsea Publ. Co., New York

    MATH  Google Scholar 

  • Hobby D (1996) Semi-De Morgan algebras. Stud Log 56(1–2):151–183 Special issue on Priestley duality

    Article  MathSciNet  MATH  Google Scholar 

  • Jakl T, Jung A, Pultr A (2016) Bitopology and four-valued logic. Electron Notes Theor Comput Sci 325:201–219

    Article  MathSciNet  MATH  Google Scholar 

  • Jansana R, Rivieccio U (2014) Dualities for modal N4-lattices. Log J I.G.P.L. 22(4):608–637

    MathSciNet  MATH  Google Scholar 

  • Jung A, Rivieccio U (2013) Kripke semantics for modal bilattice logic. In: 28th annual ACM/IEEE symposium on logic in computer science, LICS 2013, New Orleans, LA, USA, June 25–28, 2013, pp 438–447

  • Meinke K, Tucker JV (1992) Universal algebra. In: Abramsky S, Gabbay D, Maibaum T (eds) Handbook of logic in computer science, vol 1. Oxford University Press, Oxford, pp 189–411

    Google Scholar 

  • Nelson D (1949) Constructible falsity. J Symb Log 14:16–26

    Article  MathSciNet  MATH  Google Scholar 

  • Odintsov SP (2003) Algebraic semantics for paraconsistent Nelson’s logic. J Log Comput 13(4):453–468

    Article  MathSciNet  MATH  Google Scholar 

  • Odintsov SP (2004) On the representation of N4-lattices. Stud Log 76(3):385–405

    Article  MathSciNet  MATH  Google Scholar 

  • Odintsov SP (2010) Priestley duality for paraconsistent Nelson’s logic. Stud Log 96(1):65–93

    Article  MathSciNet  MATH  Google Scholar 

  • Rasiowa H (1974) An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, vol 78. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Rivieccio U (2014) Implicative twist-structures. Algebra Univ 71(2):155–186

    Article  MathSciNet  MATH  Google Scholar 

  • Rivieccio U, Jung A, Jansana R (2017) Four-valued modal logic: Kripke semantics and duality. J Log Comput 27:155–199

    Article  MathSciNet  MATH  Google Scholar 

  • Rivieccio U, Jung A, Maia P (2020) Non-involutive twist-structures. Log J IGPL 28(5):973–999

    Article  MathSciNet  Google Scholar 

  • Rivieccio U (2020) Fragments of quasi-Nelson: two negations. J Appl Log 7(4):499–559

    Google Scholar 

  • Rivieccio U (2020) Representation of De Morgan and (semi-)Kleene lattices. Soft Comput 24(12):8685–8716

    Article  Google Scholar 

  • Rivieccio U, Jansana R, Nascimento T (2020) Two dualities for weakly pseudo-complemented quasi-Kleene algebras. In: Lesot MJ et al (eds) Information processing and management of uncertainty in knowledge-based systems. IPMU 2020. Communications in Computer and Information Science, vol. 1239. Springer, Berlin, pp 634–653

    Google Scholar 

  • Rivieccio U, Spinks M (2019) Quasi-Nelson algebras. Electron Notes Theor Comput Sci 344:169–188

    Article  MathSciNet  MATH  Google Scholar 

  • Rivieccio U, Spinks M (2020) Quasi-Nelson; or, non-involutive Nelson algebras. In: Fazio D, Ledda A, Paoli F (eds) Algebraic perspectives on substructural logics (Trends in Logic, 55). Springer, pp 133–168

  • Sankappanavar HP (1987) Semi-De Morgan algebras. J Symb Log 52(03):712–724

    Article  MathSciNet  MATH  Google Scholar 

  • Spinks M, Rivieccio U, Nascimento T (2019) Compatibly involutive residuated lattices and the Nelson identity. Soft Comput 23:2297–2320

    Article  MATH  Google Scholar 

  • Vakarelov D (1977) Notes on \(\cal{N}\)-lattices and constructive logic with strong negation. Stud Log 36(1–2):109–125

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The first author was supported by the Universities UK International Rutherford Fund Strategic Partnership Grant 2018/19, held at the University of Birmingham. The second author received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 731143 for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Rivieccio.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivieccio, U., Jung, A. A duality for two-sorted lattices. Soft Comput 25, 851–868 (2021). https://doi.org/10.1007/s00500-020-05482-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-05482-7

Keywords

Navigation