Skip to main content
Log in

Stability analysis of dynamic nonlinear interval type-2 TSK fuzzy control systems based on describing function

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper focuses on the limit cycles prediction problem to discuss the stability analysis of dynamic nonlinear interval type-2 Takagi–Sugeno–Kang fuzzy control systems (NIT2 TSK FCSs) with adjustable parameters. First, in order to alleviate computational burden, a simple architecture of NIT2 TSK FCS using two embedded nonlinear type-1 TSK fuzzy control systems (NT1 TSK FCSs) is proposed. Then, describing function (DF) of NIT2 TSK FCS is obtained based on the DFs of embedded NT1 TSK FCSs. Subsequently, integrating the stability equation and parameter plane approaches provides a solution to identify the limit cycle and the asymptotically stable regions. Moreover, particle swarm optimization technique is applied to minimize the limit cycle region. Furthermore, for robust design, a gain-phase margin tester is utilized to specify the minimum gain margin (\(\hbox {GM}_{\mathrm{min}}\)) and phase margin (\(\hbox {PM}_{\mathrm{min}}\)) when limit cycles can arise. Finally, two simulation examples are considered to validate the advantages of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Namadchian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Proof of Lemma 1:

\(\forall t_1\in R\), let \(x_1\equiv A\hbox {sin}\omega t_1\) and \({{\dot{x}}}_1\equiv \omega A\hbox {cos}\omega t_1\).

For LNT1 TSK FCS: As shown in Fig. 5, in the case

\( \Phi _{k} \le x_{1} <\Phi _{k+1} \) and \(\Psi _{l} \le {\dot{x}}_{1} <\Psi _{l+1} \), we have

$$\begin{aligned} {\underline{u}}(t_{1} )&=\frac{1}{{\underline{\zeta }}} \mathrm{((}{\underline{M}}_{k} (x_{1} ){\underline{Z}}_{k,l} (x_{1} ,{\dot{x}}_{1} )\mathrm{)}\Pi _{1}^{x_{1} } \mathrm{+(}{\underline{M}}_{k} (x_{1} ){\underline{Z}}_{k,l} (x_{1} ,{\dot{x}}_{1})\\&\quad +\,{\underline{M}}_{k+1} (x_{1} ){\underline{Z}}_{k+1,l} (x_{1} ,{\dot{x}}_{1} )\mathrm{)}\Pi _{2}^{x_{1} } \\&\quad +\,\mathrm{(}{\underline{M}}_{k+1} (x_{1} ){\underline{Z}}_{k+1,l} (x_{1} ,{\dot{x}}_{1} )\mathrm{)}\Pi _{3}^{x_{1} } \mathrm{),\; \; \; } \end{aligned}$$

where

$$\begin{aligned} {\underline{Z}}_{k,l} (x_{1} ,{\dot{x}}_{1} )&={\underline{N}}_{l} ({\dot{x}}_{1} ){\underline{u}}_{k,l} (x_{1} ,{\dot{x}}_{1} )\Pi _{1}^{{\dot{x}}_{1} } +({\underline{N}}_{l} ({\dot{x}}_{1} ){\underline{u}}_{k,l} (x_{1} ,{\dot{x}}_{1} )\\&\quad +\,{\underline{N}}_{l+1}({\dot{x}}_{1} ){\underline{u}}_{k,l+1} (x_{1} ,{\dot{x}}_{1} ))\Pi _{2}^{{\dot{x}}_{1} } \\&\quad +\,{\underline{N}}_{l+1} ({\dot{x}}_{1} ){\underline{u}}_{k,l+1} (x_{1} ,{\dot{x}}_{1} )\Pi _{3}^{{\dot{x}}_{1} }.\\ {\underline{Z}}_{k+1,l} ({\dot{x}}_{1} )=&{\underline{N}}_{l} ({\dot{x}}_{1} ){\underline{u}}_{k+1,l} (x_{1} ,{\dot{x}}_{1} )\Pi _{1}^{{\dot{x}}_{1} }\\&\quad +\,({\underline{N}}_{l} ({\dot{x}}_{1} ){\underline{u}}_{k+1,l} (x_{1} ,{\dot{x}}_{1} )\\&\quad +\,{\underline{N}}_{l+1} ({\dot{x}}_{1} ){\underline{u}}_{k+1,l+1} (x_{1} ,{\dot{x}}_{1} ))\Pi _{2}^{{\dot{x}}_{1}} \\&\quad +\,{\underline{N}}_{l+1} ({\dot{x}}_{1} ){\underline{u}}_{k+1,l+1} (x_{1} ,{\dot{x}}_{1} )\Pi _{3}^{{\dot{x}}_{1} }. \end{aligned}$$

As proved in Kim et al. (2000), for \(t_2\equiv t_1-({\pi }/{\omega })\), \(x_2=-x_1\) and \({{\dot{x}}}_2=-{{\dot{x}}}_1\). Therefore,

$$\begin{aligned} {\underline{u}}(t_{2} )&=\frac{1}{{\underline{\zeta }}} \mathrm{((}{\underline{M}}_{-k} (x_{2} ){\underline{Z}}_{-k,-l} (x_{2} ,{\dot{x}}_{2} )\mathrm{)}\Pi _{1}^{x_{2} }\\&\quad +\,\mathrm{(}{\underline{M}}_{-k} (x_{2} ){\underline{Z}}_{-k,-l} (x_{2} ,{\dot{x}}_{2} )\\&\quad +\,{\underline{M}}_{-k-1} (x_{2}){\underline{Z}}_{-k-1,-l} (x_{2} ,{\dot{x}}_{2} )\mathrm{)}\Pi _{2}^{x_{2} } \mathrm{+(}{\underline{M}}_{-k-1} (x_{2} )\\&\quad {\underline{Z}}_{-k-1,-l} (x_{2} ,{\dot{x}}_{2} )\mathrm{)}\Pi _{3}^{x_{2} } \mathrm{)}=-{\underline{u}}(t_{1} ). \end{aligned}$$

Therefore, \({\underline{u}}(t-\left( \frac{\pi }{\omega } \right) )=-{\underline{u}}(t).\) As shown in Fig. 4, in the case \(\Phi _{k} \le x<\Phi _{k+1} \) and \(\Psi _{l} \le {\dot{x}}<\Psi _{l+1} \), we have

$$\begin{aligned} {\bar{u}}(t)&=\frac{1}{{\bar{\zeta }}} (({\bar{M}}_{k-1} (x){\bar{Z}}_{k-1,l} (x,{\dot{x}}))\Pi _{1}^{x} +({\bar{M}}_{k} (x){\bar{Z}}_{k,l} (x,{\dot{x}})\\&\quad +\,{\bar{M}}_{k+1} (x){\bar{Z}}_{k+1,l} (x,{\dot{x}}))\Pi _{2}^{x} \\&\quad +\,({\underline{M}}_{k+2} (x){\bar{Z}}_{k+2,l} (x,{\dot{x}}))\Pi _{3}^{x} ), \end{aligned}$$

where

$$\begin{aligned} {\bar{Z}}_{k-1,l} (x,{\dot{x}})&={\bar{N}}_{l-1} {\bar{u}}_{k-1,l-1} (x,{\dot{x}})\Pi _{1}^{{\dot{x}}}\\&\quad +\,({\bar{N}}_{l} {\bar{u}}_{k-1,l} (x,{\dot{x}})+{\bar{N}}_{l+1} {\bar{u}}_{k-1,l+1} (x,{\dot{x}}))\Pi _{2}^{{\dot{x}}} \\&\quad +\,{\bar{N}}_{l+2} {\bar{u}}_{k-1,l+2} (x,{\dot{x}})\Pi _{3}^{{\dot{x}}} .\\ {\bar{Z}}_{k,l} (x,{\dot{x}})=&{\bar{N}}_{l-1} {\bar{u}}_{k,l-1} (x,{\dot{x}})\Pi _{1}^{{\dot{x}}} +({\bar{N}}_{l} {\bar{u}}_{k,l} (x,{\dot{x}})\\&\quad +\,{\bar{N}}_{l+1} {\bar{u}}_{k,l+1} (x,{\dot{x}}))\Pi _{2}^{{\dot{x}}} +{\bar{N}}_{l+2} {\bar{u}}_{k,l+2} (x,{\dot{x}})\Pi _{3}^{{\dot{x}}}.\\ {\bar{Z}}_{k+1,l} (x,{\dot{x}})=&{\bar{N}}_{l-1} {\bar{u}}_{k+1,l-1} (x,{\dot{x}})\Pi _{1}^{{\dot{x}}} +({\bar{N}}_{l} {\bar{u}}_{k+1,l} (x,{\dot{x}})\\&\quad +\,{\bar{N}}_{l+1} {\bar{u}}_{k+1,l+1} (x,{\dot{x}}))\Pi _{2}^{{\dot{x}}} \\&\quad +\,{\bar{N}}_{l+2} {\bar{u}}_{k+1,l+2} (x,{\dot{x}})\Pi _{3}^{{\dot{x}}} .\\ {\bar{Z}}_{k+2,l} (x,{\dot{x}})=&{\bar{N}}_{l-1} {\bar{u}}_{k+2,l-1} (x,{\dot{x}})\Pi _{1}^{{\dot{x}}} +({\bar{N}}_{l} {\bar{u}}_{k+2,l} (x,{\dot{x}})\\&\quad +\,{\bar{N}}_{l+1} {\bar{u}}_{k+2,l+1} (x,{\dot{x}}))\Pi _{2}^{{\dot{x}}} \\&\quad +\,{\bar{N}}_{l+2} {\bar{u}}_{k+2,l+2} (x,{\dot{x}})\Pi _{3}^{{\dot{x}}} . \end{aligned}$$

The proof of \({\overline{u}}\left( t\right) =-{\overline{u}}\left( t-({\pi }/{\omega })\right) \) is similar to the proof of \({\underline{u}}\left( t\right) =-{\underline{u}}\left( t-({\pi }/{\omega })\right) \).

1.2 B. Proof of Lemma 2:

To obtain \({{\underline{a}}}_{r,k,l}\), \(\ {{\underline{b}}}_{r,k,l}\), \({{\underline{c}}}_{r,k,l}\), and \({{\underline{d}}}_{r,k,l}\) and \({\; }\Phi _{k} +\tau _{e} \le x<\Phi _{k+1} -\tau _{e} ,{\; \; }\Psi _{l} +\tau _{{\dot{e}}} \le {\dot{x}}<\Psi _{l+1} -\tau _{{\dot{e}}}\).

$$\begin{aligned} {\underline{u}}(x,\dot{x})&= {1 {/} {{{\underline{\zeta }}}}}({{{\bar{M}}}_k}(x){{\underline{N}}_l}({\dot{x}}) {{\underline{u}}_{k,l}}(x,{\dot{x}})\\&\quad +\,{{\underline{M}}_k}(x){{\underline{N}}_{l + 1}}({\dot{x}}) {{\underline{u}}_{k,l + 1}}(x,{\dot{x}})\\&\quad +\, {{\underline{M}}_{k + 1}}(x){{\underline{N}}_l}({\dot{x}}){{\underline{u}}_{k + 1,l}}(x,{\dot{x}})\\&\quad + \,{{\underline{M}}_{k + 1}}(x){{\underline{N}}_{l + 1}}({\dot{x}}) {{\underline{u}}_{k + 1,l + 1}}(x,{\dot{x}}))\\&=1 {/} {{{\underline{\zeta }}} }(\left( {\frac{{- x}}{{\Delta {\Phi _k} - {\tau _e}}} + \frac{{{\Phi _{k + 1}} - {\tau _e}}}{{\Delta {\Phi _k} - {\tau _e}}}} \right) \\&\quad \left( {\frac{{- {\dot{x}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}} + \frac{{{\Psi _{l + 1}} - {\tau _{{\dot{e}}}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}}}\right) \\&\quad {{\underline{u}}_{k,l}}(x,{\dot{x}}) + \left( {\frac{{ - x}}{{\Delta {\Phi _k} - {\tau _e}}} + \frac{{{\Phi _{k + 1}} - {\tau _e}}}{{\Delta {\Phi _k} - {\tau _e}}}} \right) \\&\quad \left( {\frac{{{\dot{x}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}} - \frac{{{\Psi _l} + {\tau _{{\dot{e}}}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}}} \right) \\&\quad {{\underline{u}}_{k,l + 1}}(x,{\dot{x}})+ \left( {\frac{x}{{\Delta {\Phi _k} - {\tau _e}}} - \frac{{{\Phi _k} + {\tau _e}}}{{\Delta {\Phi _k} - {\tau _e}}}} \right) \\&\quad \left( {\frac{{ - {\dot{x}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}} + \frac{{{\Psi _{l + 1}} - {\tau _{{\dot{e}}}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}}} \right) \\&\quad {{\underline{u}}_{k + 1,l}}(x,{\dot{x}}) + \left( {\frac{x}{{\Delta {\Phi _k} - {\tau _e}}} - \frac{{{\Phi _k} + {\tau _e}}}{{\Delta {\Phi _k} - {\tau _e}}}} \right) \\&\quad \left( {\frac{{{\dot{x}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}} - \frac{{{\Psi _l} + {\tau _{{\dot{e}}}}}}{{\Delta {\Psi _l} - {\tau _{{\dot{e}}}}}}} \right) \\ {{\underline{u}}_{k + 1,l + 1}}(x,{\dot{x}}))=&\frac{1}{{\Delta {\Phi _k} + {\tau _e}}}\frac{1}{{\Delta {\Psi _l} + {\tau _{{\dot{e}}}}}}\\&\quad ({{\underline{a}}_{1,k,l}}{x^2}{\dot{x}} + {\underline{a}_{2,k,l}}x{{\dot{x}}^2} + {{\underline{a}}_{3,k,l}}{x^2}{{\dot{x}}^3} + {{\underline{a}}_{4,k,l}}{x^3}{{\dot{x}}^2}) \\&\quad +\, \frac{1}{{\Delta {\Phi _k} + {\tau _e}}}({{\underline{b}}_{1,k,l}}{x^2} + {\underline{b}_{2,k,l}}x{\dot{x}} + {{\underline{b}}_{3,k,l}}{x^2}{{\dot{x}}^2}\\&\quad +\,{{\underline{b}}_{4,k,l}}{x^3}{\dot{x}})+ \frac{1}{{\Delta {\Psi _l} + {\tau _{{\dot{e}}}}}}({{\underline{c}}_{1,k,l}}x{\dot{x}} + {\underline{c}_{2,k,l}}{{\dot{x}}^2} \\&\quad +\,{{\underline{c}}_{3,k,l}}x{{\dot{x}}^3} + {{\underline{c}}_{4,k,l}}{x^2}{{\dot{x}}^2}) + ({\underline{d}_{1,k,l}}x{{\dot{x}}^2}\\&\quad +\, {{\underline{d}}_{2,k,l}}{x^2}{\dot{x}} + {{\underline{d}}_{3,k,l}}x + {{\underline{d}}_{4,k,l}}{\dot{x}}) \end{aligned}$$

where for \(r=1,2,3,4\)

$$\begin{aligned} {\underline{a}}_{r,k,l} =&\,m_{r,k,l} +m_{r,k,l+1} +m_{r,k+1,l} +m_{r,k+1,l+1},\\ {\underline{b}}_{r,k,l} ({\dot{x}})=&-\frac{\Psi _{l+1} -\tau _{{\dot{e}}} }{\Delta \Psi _{l} -\tau _{{\dot{e}}} } {\underline{m}}_{r,k,l}\\&+\,\frac{\Psi _{l} +\tau _{{\dot{e}}} }{\Delta \Psi _{l} -\tau _{{\dot{e}}} } {\underline{m}}_{r,k,l+1} +\frac{\Psi _{l+1} -\tau _{{\dot{e}}} }{\Delta \Psi _{l} -\tau _{{\dot{e}}} } {\underline{m}}_{r,k+1,l} \\&-\,\frac{\Psi _{l} +\tau _{{\dot{e}}} }{\Delta \Psi _{l} -\tau _{{\dot{e}}} } {\underline{m}}_{r,k+1,l+1} ),\\ {\underline{c}}_{r,k,l} ({\dot{x}})=&\,-\frac{\Phi _{k+1} -\tau _{e} }{\Delta \Phi _{k} -\tau _{e} } {\underline{m}}_{r,k,l} +\frac{\Phi _{k+1} -\tau _{e} }{\Delta \Phi _{k} -\tau _{e} } {\underline{m}}_{r,k,l+1}\\&-\, \frac{\Phi _{k} +\tau _{e} }{\Delta \Phi _{k} -\tau _{e} } {\underline{m}}_{r,k+1,l} -\frac{\Phi _{k} +\tau _{e} }{\Delta \Phi _{k} -\tau _{e} } {\underline{m}}_{r,k+1,l+1},\\ {\underline{d}}_{r,k,l} ({\dot{x}})=&\,(\Phi _{k+1} -\tau _{e} )(\Psi _{l+1} -\tau _{{\dot{e}}} ){\underline{m}}_{r,k,l} \\&-\,(\Phi _{k+1} -\tau _{e} )(\Psi _{l} +\tau _{{\dot{e}}} ) {\underline{m}}_{r,k,l+1} \\&-\,(\Phi _{k} +\tau _{e} )(\Psi _{l+1} -\tau _{{\dot{e}}}) {\underline{m}}_{r,k+1,l} \\&+\,(\Phi _{k} +\tau _{e} )(\Psi _{l} +\tau _{{\dot{e}}} ){\underline{m}}_{r,k+1,l+1}. \end{aligned}$$

The proof of \({{\underline{a}}}_{r,k,l}\),\(\ {{\underline{b}}}_{r,k,l}\), \({{\underline{c}}}_{r,k,l}\), and \({{\underline{d}}}_{r,k,l}\) for other intervals and \({{\overline{a}}}_{r,k,l}\), \({{\overline{b}}}_{r,k,l}\), \({{\overline{c}}}_{r,k,l}\) and \({{\overline{d}}}_{r,k,l}\) is similar to this proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namadchian, Z., Zare, A. Stability analysis of dynamic nonlinear interval type-2 TSK fuzzy control systems based on describing function. Soft Comput 24, 14623–14636 (2020). https://doi.org/10.1007/s00500-020-04811-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-04811-0

Keywords

Navigation