Skip to main content
Log in

Uncertain pursuit-evasion game

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Pursuit-evasion game deals with the situation in which a pursuer tries to catch an evader. Taking into account the subjectivity of the players’ strategies and the fact that the noise of system state does not obey the statistical regularity, this paper employs an uncertain differential equation to describe the dynamics of the pursuit-evasion system, and introduces an uncertain pursuit-evasion game. Within the framework of uncertain differential game theory, a solution for the uncertain pursuit-evasion game is derived via the corresponding Riccati equation. At last, as an application, a target interception problem is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagchi A, Olsder GJ (1981) Linear-quadratic stochastic pursuit-evasion games. Appl Math Optim 7(1):95–123

    Article  MathSciNet  Google Scholar 

  • Ben-Asher J, Yaesh I (1998) Advance in missile guidance theory. American Institute of Aeronautics & Astronautics, Reston

    Google Scholar 

  • Ben-Asher JZ, Levinson S, Shinar J, Weiss H (2004) Trajectory shaping in linear-quadratic pursuit-evasion games. J Guid Control Dyn 27(6):1102–1105

    Article  Google Scholar 

  • Berkovitz LD (1964) A variational approach to differential games. Advances in game theory. Princeton University Press, Princeton, pp 127–174

    MATH  Google Scholar 

  • Berkovitz LD (1985) The existence of value and saddle point in games of fixed duration. SIAM J Control Optim 23(2):172–196

    Article  MathSciNet  Google Scholar 

  • Chen J, Zha W, Peng Z (2016) Multi-player pursuit evasion games with one superior evader. Automatica 71:24–32

    Article  MathSciNet  Google Scholar 

  • Fleming WH (1969) Optimal continuous-parameter stochastic control. SIAM Rev 11:470–509

    Article  MathSciNet  Google Scholar 

  • Friedman A (1971) Differential games. Wiley, New York

    MATH  Google Scholar 

  • Gutman S, Leitmann G (1976) Optimal strategies in the neighborhood of a collision course. AIAA J 14:1210–1212

    Article  MathSciNet  Google Scholar 

  • Gutman S (1979) On optimal guidance for homing missiles. J Guid Control 3:296–300

    Article  Google Scholar 

  • Ho YC, Bryson AE, Baron S (1965) Differential games and optimal pursuit-evasion strategies. IEEE Trans AC 10:385–389

    Article  MathSciNet  Google Scholar 

  • Isaacs R (1951) Games of Pursuit. the RAND corporation, p 257

  • Isaacs R (1965) Differential games. Wiley, New York

    MATH  Google Scholar 

  • Kolmogorov AN (1933) Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin

    Book  Google Scholar 

  • Kumkov SS, Le Menec S, Patsko VS (2017) Zero-sum pursuit-evasion differential games with many objects: Survey of publications. Dyn Games Appl 7(4):609–633

    Article  MathSciNet  Google Scholar 

  • Leitmann G, Mon G (1967) Some geometric aspects of differential games. J Astronaut Sci 14:56

    MathSciNet  Google Scholar 

  • Liu B (2007) Uncertainty theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Liu B (2008) Fuzzy process, hybrid process and uncertain process. J Uncertain Syst 2(1):3–16

    Google Scholar 

  • Liu B (2009) Some research problems in uncertainty theory. J Uncertain Syst 3(1):3–10

    Google Scholar 

  • Liu B (2015) Uncertainty theory, 4th edn. Springer, Heidelberg

    MATH  Google Scholar 

  • Mou L, Yong J (2006) Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. J Ind Manag Optim 2:95–117

    MathSciNet  MATH  Google Scholar 

  • Pontryagin LS (1966) On the theory of differential games. Uspekhi Mat Nauk 21:219–274

    MathSciNet  MATH  Google Scholar 

  • Sun J, Yong J (2016) Linear quadratic stochastic differential games: open-loop and closed-loop saddle point. SIAM J Control Optim 54(5):2274–2308

    Article  MathSciNet  Google Scholar 

  • Sun W, Tsiotras P, Lolla T (2017) Multiple-pursuer/one-evader pursuit-evasion game in dynamic flowfields. J Guid Control Dyn 40(7):1627–1637

    Article  Google Scholar 

  • Yang X, Gao J (2013) Uncertain differential games with application to capitalism. J Uncertainty Anal Appl 1:17

    Article  Google Scholar 

  • Yang X, Gao J (2016) Linear quadratic uncertain differential game with application to resource extraction problem. IEEE Trans Fuzzy Syst 24(4):819–826

    Article  Google Scholar 

  • Yao K (2014) Multi-dimensional uncertain calculus with canonical process. J Uncertain Syst 8(4):244–254

    Google Scholar 

  • Yao K (2016) Uncertain differential equations. Springer, Berlin

    Book  Google Scholar 

  • Zhu Y (2010) Uncertain optimal control with application to a portfolio selection model. Cybern Syst 41(7):535–547

    Article  Google Scholar 

  • Zhukovskii VI (1970) Analytic design of optimum strategies in certain differential games. Autom Rem Control 4:533–536

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 71701205, 71701206 & 61374082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwu Gao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by Y. Ni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A uncertain differential game

Appendix A uncertain differential game

In a general uncertain differential game, the player \(i\in N=\{1, 2, \ldots , n\}\) optimizes his objective

$$\begin{aligned} \displaystyle \sup \limits _{{{\varvec{u}}}_i}\mathrm{E}\left[ \int _{0}^TR_{i}(t,{\varvec{X}}_t,{{\varvec{u}}}_1,{{\varvec{u}}}_2,\ldots ,{{\varvec{u}}}_n)\mathrm{d}t +W_{i}(T,{\varvec{X}}_T)\right] \end{aligned}$$
(7)

subject to the uncertain state equation

$$\begin{aligned}&\mathrm{d}{\varvec{X}}_t=f(t,{\varvec{X}}_t,{{\varvec{u}}}_1,{{\varvec{u}}}_2,\ldots ,{{\varvec{u}}}_n)\mathrm{d}t\nonumber \\&\qquad \qquad +g(t,{\varvec{X}}_t,{{\varvec{u}}}_1,{{\varvec{u}}}_2,\ldots ,{{\varvec{u}}}_n)\mathrm{d}{\varvec{C}}_t\\&{\varvec{X}}_0={{\varvec{x}}}_0\nonumber \end{aligned}$$
(8)

where \(T>0\), \(R_i: [0,T]\times \mathfrak {R}^m\times \mathfrak {R}^{r_1} \times \cdots \times \mathfrak {R}^{r_n}\rightarrow \mathfrak {R}\) is an return function, \(W_i(T,\cdot ): \mathfrak {R}^m\rightarrow \mathfrak {R}\) is a function of terminal reward at time T, \({\varvec{X}}_t\in \mathfrak {R}^m\) denotes the state variables of game, \({{\varvec{u}}}_i\in \mathfrak {R}^{r_i}\) is the control of player i, the initial state \({{\varvec{x}}}_0\) is given, \(\mathrm{E}(\cdot )\) denotes the expectation operator performed at time 0, \({\varvec{C}}_t\) is a k-dimensional Liu process defined on an uncertainty space \((\Gamma , {\mathcal {L}},{\mathcal {M}})\), and suppose that

$$\begin{aligned} f:[0,T]\times \mathfrak {R}^m\times \mathfrak {R}^{r_1} \times \cdots \times \mathfrak {R}^{r_n}\rightarrow \mathfrak {R}^m \end{aligned}$$

and

$$\begin{aligned} g:[0,T]\times \mathfrak {R}^m\times R^{r_1} \times \cdots \times \mathfrak {R}^{r_n}\rightarrow \mathfrak {R}^m\times \mathfrak {R}^k \end{aligned}$$

have continuous partial derivatives, and satisfy linear growth condition and Lipschitz condition.

Each player has perfect observations of the state vector \({\varvec{X}}_t\) at every moment \(t\in [0,T]\) and constructs his strategy in the game (7)–(8) as an admissible feedback control of the following type

$$\begin{aligned} {{\varvec{u}}}_i:={{\varvec{u}}}_i(t,{\varvec{X}}_t):[0,T]\times \mathfrak {R}^m\longrightarrow \mathfrak {R}^{r_i}. \end{aligned}$$

We write

$$\begin{aligned} {{\varvec{u}}}_{-i}=\{{{\varvec{u}}}_1,{{\varvec{u}}}_2,\ldots ,{{\varvec{u}}}_{i-1},{{\varvec{u}}}_{i+1},\ldots ,{{\varvec{u}}}_n\}. \end{aligned}$$

A feedback Nash equilibrium of the uncertain differential game (7)–(8) can be defined as follows:

Definition 1

(Yang and Gao (2013)) A set of strategies \(\{{{\varvec{u}}}_1^*,{{\varvec{u}}}_2^*,\ldots ,{{\varvec{u}}}_n^*\}\) is called a feedback Nash equilibrium for the n-player uncertain differential game (7)–(8), and \({\varvec{X}}^{*}(s),t\le s\le T\}\) is the corresponding state trajectory, if there exist real-valued functions \(V^i(t,{{\varvec{x}}}):[0,T]\times \mathfrak {R}^m\rightarrow \mathfrak {R}\), satisfying the following relations for each \(i\in N\)

$$\begin{aligned}&V^i(t,{{\varvec{x}}})\\&\quad =\mathrm{E}\left[ \int _{t}^TR_{i}\left( s,{\varvec{X}}^*_s,{{\varvec{u}}}_i^*,{{\varvec{u}}}_{-i}^*\right) \mathrm{d} s +W_{i}\left( T,{\varvec{X}}^*_T\right) \right] \\&\quad \ge \mathrm{E}\left[ \int _{t}^TR_{i}\left( s,{\varvec{X}}^{[i]}_s,{{\varvec{u}}}_i,{{\varvec{u}}}_{-i}^*\right) \mathrm{d} s+W_{i}\left( T,{\varvec{X}}^{[i]}(T)\right) \right] ,\\&V^i(T,{{\varvec{x}}})=W_i(t,{\varvec{X}}_T) \end{aligned}$$

where on the time interval [tT]:

$$\begin{aligned}&\mathrm{d} {\varvec{X}}^*_s=f\left( s,{\varvec{X}}^*_s,{{\varvec{u}}}_i^*,{{\varvec{u}}}_{-i}^*\right) \mathrm{d} s +g\left( s,{\varvec{X}}^*_s,{{\varvec{u}}}_i^*,{{\varvec{u}}}_{-i}^*\right) \mathrm{d}{\varvec{C}}_s,\\&{\varvec{X}}^*_t={{\varvec{x}}};\\&\mathrm{d} {\varvec{X}}^{[i]}_s=f\left( s,{\varvec{X}}^{[i]}_s,{{\varvec{u}}}_i,{{\varvec{u}}}_{-i}^*\right) \mathrm{d} s +g\left( s,{\varvec{X}}^{[i]}_s,{{\varvec{u}}}_i,{{\varvec{u}}}_{-i}^*\right) \mathrm{d}{\varvec{C}}_s,\\&{\varvec{X}}^{[i]}_t={{\varvec{x}}}. \end{aligned}$$

Theorem 4

(Yang and Gao (2013)) An n-tuple of strategies \(\{{{\varvec{u}}}_i^*;i\in N\}\) provides a feedback Nash equilibrium to the n-player uncertain differential game (7)–(8) if there exist real-valued functions \(V^i(t,{{\varvec{x}}}):[0,T]\times \mathfrak {R}^m\rightarrow \mathfrak {R},i\in N\), satisfying the partial differential equations

$$\begin{aligned}&-V_t^i(t,{{\varvec{x}}})\\&\quad =\sup _{{{\varvec{u}}}_i}\left\{ R_{i}\left( t,{{\varvec{x}}},{{\varvec{u}}}_i,{{\varvec{u}}}_{-i}^*\right) +\nabla _{{\varvec{x}}} V^i(t,{\varvec{x}})^\tau f\left( t,{{\varvec{x}}},{{\varvec{u}}}_i,{{\varvec{u}}}_{-i}^*\right) \right\} \\&\quad =R_{i}\left( t,{{\varvec{x}}},{{\varvec{u}}}_i^*,{{\varvec{u}}}_{-i}^*\right) +\nabla _{{\varvec{x}}} V^i(t,{\varvec{x}})^\tau f\left( t,{{\varvec{x}}},{{\varvec{u}}}_i^*,{{\varvec{u}}}_{-i}^*\right) ,\\&V^i(T,{\varvec{x}})=W_i(T,{\varvec{x}}) \end{aligned}$$

where \(V_t^i(t,{\varvec{x}})\) is the partial derivatives of \(V^i(t,{\varvec{x}})\) with respect to t, \(\nabla _{{\varvec{x}}}V^i(t,{\varvec{x}})\) is the gradient of \(V^i(t,{\varvec{x}})\) with respect to \({\varvec{x}}\), and the superscript \(\tau \) denotes transpose.

In a two person zero-sum uncertain differential game, player 1 wants to maximize the index function while player 2 wants to minimize the index function. The performance index function is as follows:

$$\begin{aligned} \begin{aligned} J({{\varvec{u}}}_1,{{\varvec{u}}}_2)=&\mathrm{E}\left\{ \int _{0}^T\left[ {\varvec{X}}^{\tau }_tM{\varvec{X}}_t+2({{\varvec{u}}}_1^{\tau }S_1 +{{\varvec{u}}}_2^{\tau }S_2){\varvec{X}}_t\right. \right. \\&\left. \phantom {\displaystyle \int _{0}^{T}}\left. +{{\varvec{u}}}_1^{\tau }R_{1}{{\varvec{u}}}_1 +{{\varvec{u}}}_2^{\tau }R_{2}{{\varvec{u}}}_2\right] \mathrm{d}t+{\varvec{X}}_T^{\tau }G{\varvec{X}}_T\right\} . \end{aligned} \end{aligned}$$
(9)

And the state equation is

$$\begin{aligned} \mathrm{d}{\varvec{X}}_t=(A{\varvec{X}}_t+B_1{{\varvec{u}}}_1+B_2{{\varvec{u}}}_2)\mathrm{d}t+g(t,{\varvec{X}}_t,{{\varvec{u}}}_1,{{\varvec{u}}}_2)\mathrm{d}{\varvec{C}}_t\nonumber \\ \end{aligned}$$
(10)

with initial condition \({\varvec{X}}_0={\varvec{x}}_0\). Here, \(A, B_i\) and \(S_i\, (i=1,2)\) are bounded measurable matrix functions on [0, T] with dimensions \(m\times m, m\times r_i, r_i\times m\), respectively; M and \(R_{i}\) are bounded measurable symmetric matrix functions on [0, T] with dimensions \(m\times m, r_i\times r_i\), respectively; G is a \(m\times m\) constant symmetric matrix; and \(-R_1,R_2\) are positive definite matrices.

Theorem 5

(Yang and Gao (2016)) The two players zero-sum of linear-quadratic uncertain differential game (9)–(10) has a saddle-point Nash equilibrium solution if the following Riccati equation (with the time argument t suppressed) has a solution P(t),

$$\begin{aligned}&{\dot{P}}+A^{\tau }P+PA+M\\&\quad -\sum \limits _{i=1}^2(B_i^{\tau }P+S_i)^{\tau }R_i^{-1} (B_i^{\tau }P+S_i)=0\\&P(T) =G \end{aligned}$$

where P(t) is bounded measureable symmetric matrix function on [0, T] with dimensions \(m\times m\). Moreover, saddle point and the optimum value of performance index function are

$$\begin{aligned}&\{{{\varvec{u}}}_i^*=-R_i^{-1}(B_i^{\tau }P+S_i){\varvec{X}}_t; i=1, 2\}, \\&J({{\varvec{u}}}_1^*,{{\varvec{u}}}_2^*)={\varvec{x}}_0^{\tau }P(0){\varvec{x}}_0, \end{aligned}$$

respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Dai, L., Gao, J. et al. Uncertain pursuit-evasion game. Soft Comput 24, 2425–2429 (2020). https://doi.org/10.1007/s00500-018-03689-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-03689-3

Keywords

Navigation