Skip to main content
Log in

A probe into the chaotic nature of total ozone time series by correlation dimension method

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The endeavor of the present paper is to investigate the existence of chaotic behavior in the underlying dynamics of the total ozone concentration over Arosa, Switzerland (9.68°E, 46.78°N). For this purpose, the correlation dimension method is employed to the mean monthly total ozone concentration data collected over a period of 40 years (1932–1971) at the above location. Based on the observation of a low correlation dimension value of 1 for this data set, the study reports the existence of low-dimensional chaotic behavior in the ozone concentration dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appenzeller C, Weiss AK and Staehelin J (2000). North Atlantic oscillation modulates total ozone winter trends. Geophys Res Lett 27: 1131–1141

    Article  Google Scholar 

  • Bronnimann S, Luterbacher J, Schumtz C, Wanner H and Staehelin J (2000). Variability of total ozone at Arosa, Switzerland, since 1931 related to atmospheric circulation indices. Geophys Res Lett 27: 2213–2216

    Article  Google Scholar 

  • Chen JL, Islam S and Biswas P (1998). Non-linear dynamics of hourly ozone concentrations: nonparametric short-term prediction. Atmos Environ 32(11): 1839–1848

    Article  Google Scholar 

  • Elshorbagy A, Simonovic SP and Panu US (2002). Estimation of missing stream flow data using principles of chaos theory. J Hydrol 255: 123–133

    Article  Google Scholar 

  • Hood LL, McCormack JP and Labitzke K (1997). An investigation of dynamical contributions to midlatitude ozone trends in winter. J Geophys Res 102: 13079–13093

    Article  Google Scholar 

  • Henderson HW and Wells R (1988). Obtaining attractor dimensions from meteorological time series. Adv Geophys 30: 205–237

    Google Scholar 

  • Kugiumtzis D, Lillekjendlie B, Christophersen N (1995) Chaotic time series, Part I: Estimation of some invariant properties in state space. Preprint, pp 1–23

  • Khan S, Ganguly AR and Saigal S (2005). Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Process Geophys 12: 41–53

    Google Scholar 

  • Kocak K, Saylan L and Sen O (2000). Non-linear time series prediction of O3 concentration in Istanbul. Atmos Environ 34(8): 1267–1271

    Article  Google Scholar 

  • Lee IF, Biswas P and Islam S (1994). Estimation of the dominant degrees of freedom 10 for air pollutant concentration data: applications to ozone measurements. Atmos Environ 28(9): 1707–1714

    Article  Google Scholar 

  • Men B, Xiejing Z and Liang C (2004). Chaotic Analysis on Monthly Precipitation on Hills Region in Middle Sichuan of China. Nat Sci 2: 45–51

    Google Scholar 

  • Ott E (1993). Chaos in dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Priestley MB (1988). Non-linear and non-stationary time series analysis. Academic, London

    Google Scholar 

  • Raga GB and Le Moyne L (1996). On the nature of air pollution dynamics in Mexico City—I. Nonlinear analysis. Atmos Environ 30(23): 3987–3993

    Article  Google Scholar 

  • Schrieber T (1998) Interdisciplinary application of non-linear time series methods. Physics Report 1–86

  • Sivakumar B (2001). Rainfall dynamics in different temporal scales: a chaotic perspective. Hydrol Earth Syst Sci 5: 645–651

    Google Scholar 

  • Sivakumar B (2000). Chaos theory in hydrology: important issues and interpretations. J Hydrol 227: 1–20

    Article  Google Scholar 

  • Sivakumar B, Liong SY, Liaw CY and Phoon KK (1999). Singapore rainfall behavior: Chaotic. J Hydrol Eng ASCE 4: 38–48

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Lall U (2006) Nonlinear deterministic dynamics in hydrologic systems: present activities and future challenges. Nonlinear Process Geophys Preface 1–2

  • Smale S (1963) Diffeomorphosis with many periodic points. In: Cairns SS (eds) Differential and combinatorial topology. Princeton University Press, Princeton

  • Smale S (1967). Differentiable dynamical systems. Am Math Soc Bull 73: 748–817

    MathSciNet  Google Scholar 

  • Stehlik J (1999). Deterministic chaos in runoff series. J Hydrol Hydromechanics 47: 271–287

    Google Scholar 

  • Sander R (1999). Modeling atmospheric chemistry: Interactions between gas-phase species and liquid cloud/aerosol particles. Surv Geophys 20(1): 1–31

    Article  Google Scholar 

  • Staehelin J, Kegel R and Harris NRP (1998). Trend analysis of the homogenized total ozone series of Arosa (Switzerland). J Geophys Res 103: 8389–8399

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM and Hegerl GC (2000). Annular modes in the extratropical circulation. Part II: Trends. J Clim 13: 1018–1038

    Article  Google Scholar 

  • Tsonis AA (1992). Chaos: From theory to applications. Plenum, New York

    Google Scholar 

  • Varotsos C, Kondratyev KY and Efstathiou M (2001). On the seasonal variation of the surface ozone in Athens, Greece. Atmos Environ 35(2): 315–320

    Article  Google Scholar 

  • Varotsos C (2005). Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26(16): 3333–3342

    Article  Google Scholar 

  • Varotsos C and Kirk Davidoff D (2006). Long-memory processes in ozone and temperature variations at the region 60°S–60°N. Atmos Chem Phys 6: 4093–4100

    Article  Google Scholar 

  • Varotsos C (2004). Atmospheric pollution and remote sensing: implications for the southern hemisphere ozone hole split in 2002 and the northern mid-latitude ozone trend. Adv Space Res 33: 249–253

    Article  Google Scholar 

  • Weigend S and Gershenfeld NA (1993). Time series prediction: forecasting the future and understanding the past. Santa Fe Institute Studies in the Science of Complexity, vol. XV. Addison-Wesley, New York

    Google Scholar 

  • Wilks DS (1995). Statistical methods in atmospheric sciences. Academic Press, New York

    Google Scholar 

  • Wilks DS (1991). Representing serial correlation of meteorological events and forecasts in dynamic decision-analytic models. Mon Weather Rev 119: 1640–1662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, G., Chattopadhyay, S. A probe into the chaotic nature of total ozone time series by correlation dimension method. Soft Comput 12, 1007–1012 (2008). https://doi.org/10.1007/s00500-007-0267-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-007-0267-7

Keywords

Navigation