Skip to main content
Log in

Necessary conditions for turnpike property for generalized linear–quadratic problems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper, we develop several necessary conditions of turnpike property for generalized linear–quadratic (LQ) optimal control problem in infinite-dimensional setting. The term ‘generalized’ here means that both quadratic and linear terms are considered in the running cost. The turnpike property reflects the fact that over a sufficiently large time horizon, the optimal trajectories and optimal controls stay for most of the time close to a steady state of the system. We show that the turnpike property is strongly connected to certain system theoretical properties of the control system. We provide suitable conditions to characterize the turnpike property in terms of the detectability and stabilizability of the system. Subsequently, we show the equivalence between the exponential turnpike property for generalized LQ and LQ optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson BD, Kokotovic PV (1987) Optimal control problems over large time intervals. Automatica 23(3):355–363

    Article  MathSciNet  Google Scholar 

  2. Angeli D, Amrit R, Rawlings JB (2012) On average performance and stability of economic model predictive control. IEEE Trans Autom Control 57(7):1615–1626

    Article  MathSciNet  Google Scholar 

  3. Bensoussan A, Da Prato G, Delfour M C, Mitter S K (2007) Representation and control of infinite dimensional systems. Systems & Control : Foundations & Applications. Birkhäuser, Boston, 2nd ed. edition

  4. Carlson DA (1990) The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay. SIAM J Control Optim 28(2):402–422

    Article  MathSciNet  Google Scholar 

  5. Carlson DA, Haurie A, Jabrane A (1987) Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals. SIAM J Control Optim 25(6):1517–1541

    Article  MathSciNet  Google Scholar 

  6. Damm T, Grüne L, Stieler M, Worthmann K (2014) An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J Control Optim 52(3):1935–1957

    Article  MathSciNet  Google Scholar 

  7. Davies EB (1980) One-parameter semigroups. London Mathematical Society monographs series. vol 15. Academic Press, New York

  8. Dorfman R, Samuelson PA, Solow RM (1958) Linear programming and economic analysis, new york-toronto-london: Mcgraw-hill book co., inc., 1958. pp. ix, 527. American Journal of Agricultural Economics, 40(3):772–774

  9. Faulwasser T, Grüne L (2020) Turnpike properties in optimal control: an overview of discrete-time and continuous-time results

  10. Grüne L, Guglielmi R (2018) Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems. SIAM J Control Optim 56(2):1282–1302

    Article  MathSciNet  Google Scholar 

  11. Grüne L, Guglielmi R (2021) On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Math Control Related Fields 11(1):169–188

    Article  MathSciNet  Google Scholar 

  12. Grüne L, Müller MA (2016) On the relation between strict dissipativity and turnpike properties. Syst Control Lett 90:45–53

    Article  MathSciNet  Google Scholar 

  13. Grüne L, Müller MA (2016) On the relation between strict dissipativity and turnpike properties. Syst Control Lett 90:45–53

    Article  MathSciNet  Google Scholar 

  14. Grüne L, Philipp F, Schaller M (2022) Strict dissipativity for generalized linear-quadratic problems in infinite dimensions. IFAC-PapersOnLine, 55(30):311–316, 2022. 25th International Symposium on Mathematical Theory of Networks and Systems MTNS

  15. Grüne L, Stieler M (2014) Asymptotic stability and transient optimality of economic MPC without terminal conditions. J Process Control 24(8):1187–1196

    Article  Google Scholar 

  16. Gugat M, Trélat E, Zuazua E (2016) Optimal Neumann control for the 1d wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst Control Lett 90:61–70

    Article  MathSciNet  Google Scholar 

  17. Li Z (2023) Turnpike property for generalized linear-quadratic optimal control problem. Master’s thesis, University of Waterloo, April. http://hdl.handle.net/10012/19355

  18. Li Z (2023) Turnpilke property for infinite-dimensional generalized LQ problem. https://doi.org/10.48550/arXiv.2208.00307

  19. McKenzie LW (2005) Optimal economic growth, turnpike theorems and comparative dynamics. In: Arrow KJ, Intriligator M (eds) Handbook of Mathematical Economics, volume 3 of Handbook of Mathematical Economics, chapter 26. Elsevier, pp 1281–1355

    Google Scholar 

  20. Neumann JV (1945) A model of general economic equilibrium 1. Rev Econ Stud 13(1):1–9

    Article  MathSciNet  Google Scholar 

  21. Porretta A, Zuazua E (2013) Long time versus steady state optimal control. SIAM J Control Optim 51(6):4242–4273

    Article  MathSciNet  Google Scholar 

  22. Samuelson P (1976) The periodic turnpike theorem. Nonlinear Anal Theory Methods Appl 1(1):3–13

    Article  MathSciNet  Google Scholar 

  23. Trélat E, Zhang C, Zuazua E (2018) Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM J Control Optim 56(2):1222–1252

    Article  MathSciNet  Google Scholar 

  24. Trélat E, Zuazua E (2015) The turnpike property in finite-dimensional nonlinear optimal control. J Differ Equ 258(1):81–114

    Article  MathSciNet  Google Scholar 

  25. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser advanced texts. Birkhäuser, Basel

    Book  Google Scholar 

  26. Weiss G, Zwart H (1998) An example in linear quadratic optimal control. Syst Control Lett 33(5):339–349

    Article  MathSciNet  Google Scholar 

  27. Zanon M, Grüne L, Diehl M (2017) Periodic optimal control, dissipativity and MPC. IEEE Trans Autom Control 62(6):2943–2949

    Article  MathSciNet  Google Scholar 

  28. Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Nonconvex Optimization and Its Applications. vol 80. Springer, New York

  29. Zaslavski AJ (2014) Turnpike phenomenon and infinite horizon optimal control. Springer Optimization and Its Applications. vol 99. Springer, Cham

  30. Zaslavski AJ (2015) Turnpike theory of continuous-time linear optimal control problems. Springer Optimization and Its Applications, 104. Springer International Publishing, Cham, 1st ed. 2015. edition

Download references

Acknowledgements

The authors thank the referees for their valuable comments that helped improving the first version of the paper. The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2021-02632.

Author information

Authors and Affiliations

Authors

Contributions

ZL was involved in methodology, investigation, formal analysis, writing—original draft, RG helped in conceptualization, funding acquisition, resources, supervision, writing—review & editing

Corresponding author

Correspondence to Zhuqing Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The closed-form solution of the optimal control

Appendix A: The closed-form solution of the optimal control

Lemma A.1

For any \(T>0\) and \(x_0\in \mathcal {H}\), if there exists a vector \(w\in D(A^*)\) and a steady state \((x_e,u_e)\) such that

$$\begin{aligned} \begin{bmatrix} A^*\\ B^* \end{bmatrix} w= \begin{bmatrix} z+C^*Cx_e\\ v+K^*Ku_e \end{bmatrix} , \end{aligned}$$
(A.1)

then the optimal pair \((x^*_T(\cdot ,x_0),u^*_T(\cdot ,x_0))\) of problem \((GLQ)_T\) satisfies

$$\begin{aligned} \begin{aligned} u_T^*(t,x_0)-u_e=-(K^*&K)^{-1}B^*P(T-t)(x_T^*(t,x_0)-x_e)\\&-(K^*K)^{-1}B^*(U_{T-t}(T-t,0))^*w,\;\;\forall t\in [0,T]. \end{aligned} \end{aligned}$$
(A.2)

Proof

For any \(T>0\), we claim that \((U_T(T,0))^*\) is the evolution operator at time T of the following evolution system:

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\textrm{d}p(t)}{\textrm{d}t}=(A^*-P(t)B(K^*K)^{-1}B^*)p(t),\\&p(0)=p_0\in \mathcal {H}. \end{aligned} \right. \end{aligned}$$

In other words, we have that \((U_T(T,0))^*p_0=p(T)\).

The proof is based on Yosida approximations. Let \(A_n:=nA(nI-A)^{-1}\in \mathcal {L}(\mathcal {H})\) denote the Yosida approximation of A for sufficiently large \(n\in \mathbb {N}\). Assume that \(x_0,p_0\in \mathcal {H}\). For each n, we let \(x_n\) denote the solution of problem

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\textrm{d}x_n(t)}{\textrm{d}t}=(A_n-B(K^*K)^{-1}B^*P(T-t))x_n(t),\;\;t\in [0,T]\\&x_n(0)=x_0, \end{aligned} \right. \end{aligned}$$

and \(p_n\) denote the solution of problem

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\textrm{d}p_n(t)}{\textrm{d}t}=(A_n^*-P(t)B(K^*K)^{-1}B^*)p_n(t),\;\;t\in [0,T]\\&p_n(0)=p_0. \end{aligned} \right. \end{aligned}$$

Since \(A_n\) is bounded, we can easily verify (by showing that the derivative is 0) that

$$\begin{aligned} \langle x_0,p_n(T)\rangle =\langle x_n(T),p_0\rangle . \end{aligned}$$

By [3, Part II, Chapter 1, Proposition 3.4], \(p_n(T)\rightarrow p(T)\) and \(x_n(T)\rightarrow U_T(T,0)x_0\) as \(n\rightarrow \infty \). This further implies that

$$\begin{aligned} \langle x_0,p(T)\rangle =\langle U_T(T,0)x_0,p_0\rangle =\langle x_0,(U_T(T,0))^*p_0\rangle . \end{aligned}$$

Since \(x_0,p_0\in \mathcal {H}\) can be chosen arbitrarily, our claim then follows.

Now fix some \(T>0\) and define \(p(\cdot )=(U_{\cdot }(\cdot ,0))^*w\) on [0, T]. Since \(w\in D(A^*)\), by [3, Part II, Chapter 1, Proposition 3.5] we have that

$$\begin{aligned} p(\cdot )\in C([0,T],D(A^*))\cap C^1([0,T],\mathcal {H}). \end{aligned}$$

We then deduce that

$$\begin{aligned} \frac{\textrm{d}p(T-t)}{\textrm{d}t}=-(A^*-P(T-t)B(K^*K)^{-1}B^*)p(T-t)\;\;\text {in}\;\;\mathcal {H},\;\;\forall t\in [0,T]. \end{aligned}$$

Let x be the solution of problem (2.3) corresponding to input \(u\in L^2(0,T;\mathcal {U})\) and initial condition \(x_0\in \mathcal {H}\). Then, thanks to assumption (A.1),

$$\begin{aligned} \int _0^T\langle z,x(t)&\rangle +\langle v,u(t)\rangle \textrm{d}t\\&=\int _0^T\langle w,Ax(t)+Bu(t)\rangle _{\mathcal {H}_1^d,\mathcal {H}_{-1}}-\langle Cx_e,Cx(t)\rangle -\langle Ku_e,Ku(t)\rangle \textrm{d}t\\&=\langle w,x(T)-x_0\rangle +\int _0^T-\langle Cx_e,Cx(t)\rangle -\langle Ku_e,Ku\rangle \textrm{d}t. \end{aligned}$$

Combining this with (3.3) shows that

$$\begin{aligned} \begin{aligned} J_T(x_0,u)&=\int _0^T\Vert K\{(u(t)-u_e)+(K^*K)^{-1}B^*P(T-t)(x(t)-x_e)\}\Vert ^2\textrm{d}t\\&\quad -J_T(x_e,u_e)+\langle P(T)(x_0-x_e),(x_0-x_e)\rangle +2{\text {Re}}\langle w,x(T)-x_0\rangle . \end{aligned} \end{aligned}$$
(A.3)

On the other hand, we have

$$\begin{aligned} 2{\text {Re}}\langle&x(T),w\rangle -2{\text {Re}}\left\langle x_0,p(T)\right\rangle \\&={\text {Re}}\int _0^T2\left\langle Ax(t)+Bu(t),p(T-t)\right\rangle _{H_{-1},H_{1}^d}\\&\quad +2\left\langle x(t),-(A^*-P(T-t)B(K^*K)^{-1}B^*)p(T-t)\right\rangle \textrm{d}t\\&={\text {Re}}\int _0^T2\left\langle u(t),B^*p(T-t)\right\rangle \\&\quad +2\left\langle (K^*K)^{-1}B^*P(T-t)x(t),B^*p(T-t)\right\rangle \textrm{d}t. \end{aligned}$$

This, together with (A.3) implies that

$$\begin{aligned} J_T(x_0,u)&=\int _0^T\Vert K\{(u(t)-u_e)+(K^*K)^{-1}B^*P(T-t)(x(t)-x_e)\}\Vert ^2\textrm{d}t\\&\quad +2{\text {Re}}\langle w,x(T)\rangle +M_0\\&=\int _0^{T} \Vert K\{(u(t)-u_e)+(K^*K)^{-1}B^*P(T-t)(x(t)-x_e)\}\Vert ^2\\&\quad +2{\text {Re}}\left\langle (K^*K)^{-1}B^*P(T-t)(x(t)-x_e),B^*p(T-t)\right\rangle \\&\quad +2{\text {Re}}\left\langle (u(t)-u_e),B^*p(T-t)\right\rangle dt+M_1\\&=\int _0^{T}\left\| K\left\{ (u(t)-u_e)+(K^*K)^{-1}B^*\left[ P(T-t)(x(t)-x_e)+p(T-t)\right] \right\} \right\| ^2\textrm{d}t\\&\quad +M_2 \end{aligned}$$

where \(M_0\), \(M_1\) and \(M_2\in \mathbb {R}\) are constants independent of u.

This implies that, if the closed loop system corresponding to the feedback law

$$\begin{aligned} u(t)-u_e&=-(K^*K)^{-1}B^*P(T-t)(x(t)-x_e)\\&-(K^*K)^{-1}B^*(U_{T-t}(T-t,0))^*w,\;\;\forall t\in [0,T], \end{aligned}$$

admits a solution in \(L^2(0,T;\mathcal {H})\), then this solution is optimal.

By [3, Part II, Chapter 1, Proposition 3.5], this problem does admit a unique solution x in \(L^2(0,T;\mathcal {H})\). So, the optimal pair verifies equation (A.2). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmi, R., Li, Z. Necessary conditions for turnpike property for generalized linear–quadratic problems. Math. Control Signals Syst. (2024). https://doi.org/10.1007/s00498-024-00385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-024-00385-6

Keywords

Navigation