In Sect. 3, we have reviewed the classical solution to linear hyperbolic PDEs. But considering a coupling with switched DAEs, the boundary data for the PDE are given by piecewise-smooth distributions. Thus, we need to extend the solutions in the distributional sense, including Dirac impulses and its derivatives. Unfortunately, we cannot simply consider distributions on \({\mathbb {R}}^2\), since we still need to evaluate the traces at initial time and the boundaries. Therefore, we construct an appropriate solution space by piecewise-smooth distributions in time and space.
Distribution theory in time and space
Definition 11
(Piecewise-smooth functions in time and space) Denote by \(T\subseteq {\mathbb {R}}\) (time) and \(X\subseteq {\mathbb {R}}\) (space) open intervals. We say a family of subsets \((P_i)_{i\in {\mathcal {I}}}\) of \(T\times X\) for some index set \({\mathcal {I}}\) is a polyhedral partition of \(T\times X\) if and only if \(P_i\) are polyhedral sets (i.e. the intersection of finitely many open or closed half-spaces in \(T\times X\)), are pairwise disjoint and \(\bigcup _{i\in {\mathcal {I}}} P_i = T\times X\).
A function \(\beta :T\times X \rightarrow {\mathbb {R}}\) is called (polyhedral) piecewise-smooth if and only if there exists a locally finite polyhedral partition \(\bigcup _{i\in {\mathcal {I}}} P_i\) of \(T\times X\) and a family of smooth functions \(\beta _i:T\times X\rightarrow {\mathbb {R}}\), \(i\in {\mathcal {I}}\) such that
$$\begin{aligned} \beta = \sum _{i\in {\mathcal {I}}} \chi _{P_i} \beta _i, \end{aligned}$$
(5.1)
where \(\chi _{P_i}\) is the characteristic function of the set \(P_i\subseteq T\times X\).
In the definition of a polyhedral partition \((P_i)_{i\in {\mathcal {I}}}\), it is not excluded that some \(P_i\) have empty interior (i.e. have measure zero), and this has the advantage that then the corresponding space of piecewise-smooth functions is closed under addition and restriction to polyhedral sets. For a piecewise-smooth function \(\beta :T\times X\rightarrow {\mathbb {R}}\), it is easily seen that for any \(t\in T\) and \(x\in X\), the functions \(\beta (t,\cdot )\) and \(\beta (\cdot ,x)\) are scalar piecewise-smooth functions as in Definition 9 (where we treat two functions as equal when they are equal almost everywhere).
Definition 12
(Dirac segment, cf. [23]) Let \(L\subseteq T\times X\) be a line segment, i.e. there exists \(t_0,t_1\in T\), \(x_0,x_1\in X\) such that
$$\begin{aligned} L = \left\{ (t_0 + \xi (t_1-t_0),x_0 + \xi (x_1-x_0))\,\left| \, \xi \in [0,1]\,\right. \!\!\right\} . \end{aligned}$$
(5.2)
Then, the Dirac segment on L is
$$\begin{aligned} \delta _L : {\mathcal {C}}_0^\infty (T\times X \rightarrow {\mathbb {R}}) \rightarrow {\mathbb {R}}: \varphi \mapsto \int _L \varphi , \end{aligned}$$
where \(\int _L \varphi \) is the usual line integral given by
$$\begin{aligned} \int _L \varphi = \int _0^1 \varphi (t_0+\alpha (t_1-t_0),x_0+\alpha (x_1-x_0)) \sqrt{\Delta t^2 + \Delta x^2} \,\text {d} \alpha , \end{aligned}$$
where \(\Delta t = t_1-t_0\) and \(\Delta x = x_1-x_0\). For unbounded line segments (i.e. \(\xi \) ranges over an unbounded interval in (5.2)), the integral boundaries in the definition of \(\int _L \varphi \) are replaced by \(\pm \infty \) appropriately.
Note that if \(\Delta t\ne 0\), then
$$\begin{aligned} \int _L \varphi = \int _{t_0}^{t_1} \varphi (t,x_0+\tfrac{\Delta x}{\Delta t} (t-t_0)) \sqrt{1 + \tfrac{\Delta x^2}{\Delta t^2}} \,\text {d} t\end{aligned}$$
and if \(\Delta x \ne 0\) then
$$\begin{aligned} \int _L \varphi = \int _{x_0}^{x_1} \varphi (t_0 + \tfrac{\Delta t}{\Delta x} (x-x_0), x) \sqrt{1 + \tfrac{\Delta t^2}{\Delta x^2}} \,\text {d} x. \end{aligned}$$
Lemma 13
Assume \(T={\mathbb {R}}\), \(X={\mathbb {R}}\) and consider the unbounded line \(L=\left\{ (t_0+\lambda \Delta t,x_0+\lambda \Delta x)\,\left| \, \lambda \in {\mathbb {R}}\,\right. \!\!\right\} \) for some \(t_0\in T\), \(x_0\in X\) and \(\Delta t>0, \Delta x >0\). For the step function along L given by
$$\begin{aligned}\begin{aligned} H_L(t,x)&= {\left\{ \begin{array}{ll} 1,&{}\quad t-t_0 \ge \tfrac{\Delta t}{\Delta x}(x-x_0),\\ 0,&{}\quad \mathrm {otherwise}\end{array}\right. } ={\left\{ \begin{array}{ll} 1,&{}\quad x-x_0 \le \tfrac{\Delta x}{\Delta t}(t-t_0),\\ 0,&{}\quad \mathrm {otherwise}\end{array}\right. } \end{aligned} \end{aligned}$$
we have
$$\begin{aligned} \begin{aligned} \partial _t {H_L}_{\mathbb {D}}&= \frac{1}{\sqrt{1+(\frac{\Delta t}{\Delta x})^2}} \delta _L,&\quad \partial x {H_L}_{\mathbb {D}}&= -\frac{1}{\sqrt{1+(\frac{\Delta x}{\Delta t})^2}} \delta _L \end{aligned} \end{aligned}$$
in particular,
$$\begin{aligned} \partial _t {H_L}_{\mathbb {D}}= -\tfrac{\Delta x}{\Delta t} \partial _x {H_L}_{\mathbb {D}}\end{aligned}$$
Proof
Recall the general definition of the partial derivative of a distribution D on \(T\times X\):
$$\begin{aligned} \left( \partial _t D\right) (\varphi ):= -D\left( \partial _t\varphi \right) \quad \text { and }\quad \left( \partial _x D\right) (\varphi ):= -D\left( \partial _x\varphi \right) . \end{aligned}$$
Hence, we have
$$\begin{aligned} \left( \partial _t {H_L}_{\mathbb {D}}\right) (\varphi )&= - \int _X\int _T H_L(t,x) \partial _t\varphi (t,x) \,\text {d} t\,\text {d} x\\&= - \int _{-\infty }^{\infty } \int _{t_0+\tfrac{\Delta t}{\Delta x}(x-x_0)}^\infty \partial _t\varphi (t,x) \,\text {d} t\,\text {d} x\\&= \int _{-\infty }^{\infty } \varphi (t_0+\tfrac{\Delta t}{\Delta x}(x-x_0),x) \,\text {d} x= \frac{1}{\sqrt{1+\left( \frac{\Delta t}{\Delta x}\right) ^2}} \int _L \varphi ,\\ \left( \partial _x {H_L}_{\mathbb {D}}\right) (\varphi )&= - \int _T\int _X H_L(t,x) \partial _x\varphi (t,x) \,\text {d} x\,\text {d} t\\&= - \int _{-\infty }^{\infty } \int _{-\infty }^{x_0+\tfrac{\Delta x}{\Delta t}(t-t_0)} \partial _t\varphi (t,x) \,\text {d} x\,\text {d} t\\&= -\int _{-\infty }^{\infty } \varphi (t,x_0+\tfrac{\Delta x}{\Delta t}(t-t_0)) \,\text {d} t= -\frac{1}{\sqrt{1+\left( \frac{\Delta x}{\Delta t}\right) ^2}} \int _L \varphi . \end{aligned}$$
From this, the claims follow. \(\square \)
Corollary 14
Let \(P\subseteq T\times X\) be a polyhedral set with the line segments \(L_1,L_2,\ldots ,L_p\) as boundaries. Then, the partial derivative of \({\chi _P}_{\mathbb {D}}\) is a linear combination of \(\delta _{L_1},\delta _{L_2},\ldots ,\delta _{L_p}\).
Definition 15
(Piecewise-smooth distributions in space and time) A distribution \(D:{\mathcal {C}}_0^\infty (T\times X)\rightarrow {\mathbb {R}}\) is called piecewise smooth if and only if there exists a piecewise-smooth function \(\beta :T\times X\rightarrow {\mathbb {R}}\) and a locally finite family of line segments \((L_j)_{j\in {\mathcal {J}}}\) in \(T\times X\) and coefficients \(\alpha _{j}^{k,\ell }\in {\mathbb {R}}\), \(k=0,1,\ldots ,n_{j}^t\), \(\ell =0,1,\ldots ,n_{j}^x\) such that
$$\begin{aligned} D = \beta _{\mathbb {D}}+ \sum _{j\in {\mathcal {J}}} \sum _{k,\ell } \alpha _{j}^{k,\ell } \partial _t^{(k)} \partial _x^{(\ell )} \delta _{L_j}. \end{aligned}$$
(5.3)
The space of piecewise-smooth distributions on \(T\times X\) is denoted by \({\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T\times X)\)
Lemma 16
Let \(D\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T\times X)\) given by (5.3) and (5.1), then
-
1.
\(\partial _t D \in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T\times X)\) and \(\partial _x D \in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T\times X)\);
-
2.
The restriction of D to any polyhedral set \(P\subseteq T\times X\) given by \(D_P := (\sum _{i\in {\mathcal {I}}} \chi _{P_i\cap P} \beta _i)_{\mathbb {D}}+ \sum _{j\in {\mathcal {J}}} \sum _{k,\ell } \alpha _{j}^{k,\ell } (\partial _t)^k (\partial _x)^\ell \delta _{L_j\cap P}\) is well defined and is again a piecewise-smooth distribution.
Proof
-
1.
It suffices to show that the (partial) derivative of (the induced distribution by) a piecewise-smooth function (in the sense of Definition 11) is a piecewise-smooth distribution. Since the sum in (5.1) is locally finite, it furthermore suffices to consider only a single summand and since the multiplication with a smooth function is well defined for general distributions, it suffices to show that the partial derivatives of the indicator function \(\chi _P\) for any polyhedral set \(P\subseteq T\times X\) are a piecewise-smooth distribution, which was already established in Corollary 14.
-
2.
First note that the intersection of two polyhedral sets is again a polyhedral set; hence, \(\sum _{i\in {\mathcal {I}}} \chi _{P_i\cap P} \beta _i\) is a piecewise-smooth function. Furthermore, the intersection of a line-segment with a polyhedral set is again a line-segment (or empty); hence, \(D_P\) is again a piecewise-smooth distribution (taking into account the local finiteness property, which implies that evaluated at any test-function reduces to finite sums for which no convergence issues occur due to the restriction). \(\square \)
For any \((t,x)\in T\times X\), we want to define in the following the partial evaluations \(D(t^+,\cdot )\), \(D(t^-,\cdot )\), \(D(\cdot ,x^-)\), \(D(\cdot ,x^+)\) such that they are piecewise-smooth distributions on X or T, respectively, and such that (partial) differentiation commutes with the partial evaluation, i.e.
$$\begin{aligned} (\partial _x D)(t^\pm ,\cdot ) = D(t^\pm ,\cdot )'\quad \text {and}\quad (\partial _t D)(\cdot ,x^\pm ) = D(\cdot ,x^\pm )', \end{aligned}$$
here \((\cdot )'\) denotes the (scalar) differentiation in \({\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\) or \({\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(X)\), respectively. Clearly, for piecewise-smooth functions, such an evaluation is trivially defined. Due to commutativity requirement concerning differentiation and evaluation, it is also clear that it suffices to define the evaluation of Dirac segments. Due to Lemma 13, there is, however, only one possible choice:
$$\begin{aligned}&\delta _L(t^+,\cdot ) := {\left\{ \begin{array}{ll} \sqrt{1+\tfrac{\Delta x^2}{\Delta t^2}} \delta _{x_0+\tfrac{\Delta x}{\Delta t}(t-t_0)}, &{} t\in [t_0,t_1),\\ 0,&{} \text {otherwise,} \end{array}\right. } \\&\delta _L(t^-,\cdot ) := {\left\{ \begin{array}{ll} \sqrt{1+\tfrac{\Delta x^2}{\Delta t^2}} \delta _{x_0+\tfrac{\Delta x}{\Delta t}(t-t_0)}, &{}\quad t\in (t_0,t_1],\\ 0,&{}\quad \text {otherwise,} \end{array}\right. } \\&\delta _L(\cdot ,x^+) := {\left\{ \begin{array}{ll} \sqrt{1+\tfrac{\Delta t^2}{\Delta x^2}} \delta _{t_0+\tfrac{\Delta t}{\Delta x}(x-x_0)}, &{}\quad x\in [x_0,x_1),\\ 0,&{}\quad \text {otherwise,} \end{array}\right. } \\&\delta _L(\cdot ,x^-) := {\left\{ \begin{array}{ll} \sqrt{1+\tfrac{\Delta t^2}{\Delta x^2}} \delta _{t_0+\tfrac{\Delta t}{\Delta x}(x-x_0)}, &{}\quad x\in (x_0,x_1],\\ 0,&{}\quad \text {otherwise.} \end{array}\right. } \end{aligned}$$
Definition 17
Let \(D\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T\times X)\) given by (5.3) and (5.1). Then, for any \((t,x)\in T\times X\)
$$\begin{aligned}\begin{aligned} D(t^\pm ,\cdot ) := \beta (t^\pm ,\cdot )_{\mathbb {D}}+ \sum _{j\in {\mathcal {J}}} \sum _{k,\ell } \alpha _{j}^{k,\ell } \partial _t^{(k)} \partial _x ^{(\ell )}\left( \delta _{L_j}(t^\pm ,\cdot )\right) ,\\ D(\cdot ,x^\pm ) := \beta (\cdot ,x^\pm )_{\mathbb {D}}+ \sum _{j\in {\mathcal {J}}} \sum _{k,\ell } \alpha _{j}^{k,\ell } \partial _t^{(k)} \partial _x ^{(\ell )} \left( \delta _{L_j}(\cdot ,x^\pm )\right) . \end{aligned} \end{aligned}$$
Distributional solutions for linear hyperbolic PDE
Before addressing linear systems, we consider the scalar advection equation
$$\begin{aligned} \partial _t v + \lambda \partial _x v = 0, \end{aligned}$$
(5.5)
where \(\lambda \in {\mathbb {R}}\) is the wave speed and the initial condition is prescribed as
$$\begin{aligned} \mathbf{I}.C. \quad v(t_0^+,\cdot ) =v^{t_0} , \end{aligned}$$
(5.6)
where \(v^{t_0}\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }((a,b))\) and the boundary condition given as
$$\begin{aligned} \mathbf{B}.C. {\left\{ \begin{array}{ll} v(\cdot ,a^+)=v^a,&{}\quad \text { if } \lambda > 0, \\ v(\cdot ,b^-)=v^b,&{} \quad \text { if } \lambda < 0, \end{array}\right. } \end{aligned}$$
(5.7)
where \(v^a, v^b \in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }((t_0,\infty ))\).
We now expand the definition of the shift operator for continuous functions in Definition 4 to distributions.
Definition 18
(Shift operator for Dirac impulses) Let \(T,X \subseteq {\mathbb {R}}\) be open intervals. The distributional time shift operator of a Dirac impulse at \(t^*\in T\) \(\delta _{t^*}\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\) with speed \(\lambda \) and initial position \(x_0\) is given by
$$\begin{aligned} {\mathcal {S}}_{\text {time}}^{\lambda ,x_0}\delta _{t^*} := \frac{1}{\sqrt{1+ \tfrac{1}{\lambda ^2} }}\ \delta _{L_{\text {time}}^{\lambda ,(t^*,x_0)}}\, , \end{aligned}$$
where \(L_{\text {time}}^{\lambda ,(t^*,x_0)}:=\left\{ (t,x)\,\left| \, t\in T,x = x_0 + \lambda (t-t^*) \in X\,\right. \!\!\right\} \); the distributional space shift operator of a Dirac impulse \(\delta _{x^*}\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(X)\) at \(x^*\in X\) with speed \(\lambda \) and initial time \(t_0\) is given by
$$\begin{aligned} {\mathcal {S}}_{\text {space}}^{\lambda ,t_0}\delta _{x^*} := \frac{1}{\sqrt{1+ \lambda ^2 }}\ \delta _{L_{\text {space}}^{\lambda ,(t_0,x^*)}}\, , \end{aligned}$$
where \(L_{\text {space}}^{\lambda ,(t_0,x^*)}:=\left\{ (t,x)\,\left| \, x\in X, t = t_0+(x-x^*)/\lambda \in T\,\right. \!\!\right\} \) .
Note that in the definition of the shift operator for Dirac impulses, the factors \(1/\sqrt{1+1/\lambda ^2}\) and \(1/\sqrt{1+\lambda ^2}\) are necessary to obtain the following equalities:
$$\begin{aligned} \left( {\mathcal {S}}_{\text {time}}^{\lambda ,x_0}\delta _{t^*}\right) (\cdot ,x^\pm ) = \delta _{t^* + (x-x_0)/\lambda }\text { and } \left( {\mathcal {S}}_{\text {space}}^{\lambda ,t_0}\delta _{x^*}\right) (t^\pm ,\cdot ) = \delta _{x^*+\lambda (t-t_0)}. \end{aligned}$$
In particular,
$$\begin{aligned} \left( {\mathcal {S}}_{\text {time}}^{\lambda ,x_0}\delta _{t^*}\right) (\cdot ,x_0^\pm ) = \delta _{t^*}\text { and } \left( {\mathcal {S}}_{\text {space}}^{\lambda ,t_0}\delta _{x^*}\right) (t_0^\pm ,\cdot ) = \delta _{x^*}. \end{aligned}$$
An illustration of the time- and space shift of Dirac impulses can also be found in Fig. 5.
Definition 19
(Shift operator for piecewise-smooth distributions) Let \(D^T\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\) and \(D^X\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(X)\) be given by \(D^T = d^T_{\mathbb {D}}+ \sum _{t^*\in T^*} D^T_{t^*}\) and \(D^X = d^X_{\mathbb {D}}+ \sum _{x^*\in X^*} D^X_{x^*}\), where \(d^T\in {\mathcal {C}}_{\text {pw}}^{\infty }(T)\), \(d^X\in {\mathcal {C}}_{\text {pw}}^{\infty }(X)\), \(T^*\subset T\) and \(X^*\subset X\) are locally finite sets, and for each \(t^*\in T^*\) and \(x^*\in X^*\) we have \(n^{t^*}\in {\mathbb {N}}\) and \(n^{x^*}\in {\mathbb {N}}\), \(c_i^{t^*}\in {\mathbb {R}}\), \(i=0,1,\ldots ,n^{t^*}\) and \(c_j^{x^*}\in {\mathbb {R}}\), \(j=0,1,\ldots ,n^{x^*}\) such that
$$\begin{aligned} D^T_{t^*} = \sum _{i=0}^{n^{t^*}} c_i^{t^*} \partial _t^{(i)}\delta _{t^*}\ \text { and } \ D^X_{x^*} = \sum _{j=0}^{n^{x^*}} c_i^{x^*} \partial _x ^{(j)} \delta _{x^*}. \end{aligned}$$
Then, the distributional time shift of \(D^T\) with speed \(\lambda \) and initial position \(x_0\) is given by
$$\begin{aligned} {\mathcal {S}}^{\lambda ,x_0}_{\text {time}} D^T := ({\mathcal {S}}^{\lambda ,x_0}_{\text {time}} d^T)_{\mathbb {D}}+ \sum _{t^*\in T^*} \sum _{i=0}^{n^{t^*}} c_i^{t^*} \partial _t^{(i)} {\mathcal {S}}^{\lambda ,x_0}_{\text {time}}\delta _{t^*}, \end{aligned}$$
and the distributional space shift of \(D^X\) with speed \(\lambda \) and initial time \(t_0\) is given by
$$\begin{aligned} {\mathcal {S}}^{\lambda ,t_0}_{\text {space}} D^X := ({\mathcal {S}}^{\lambda ,t_0}_{\text {space}} d^X)_{\mathbb {D}}+ \sum _{x^*\in X^*} \sum _{j=0}^{n^{x^*}} c_j^{x^*} \partial _x^{(j)} {\mathcal {S}}^{\lambda ,t_0}_{\text {space}}\delta _{x^*}. \end{aligned}$$
Assume \(\lambda >0\) and let \(v^{t_0}\) and \(v^a\) be given as in (5.6) and (5.7), respectively. Below, we will formulate the solution to the Eq. (5.5) in terms of the distributional space/time shift operators \({\mathcal {S}}_{\text {space}}^{\lambda ,t_0}\), \({\mathcal {S}}_{\text {time}}^{\lambda ,a}\). As seen in Sect. 3, since the solution is constant along the characteristics, exploiting the distributional space/time shift operator given in Definition 19, it can be written as
$$\begin{aligned} v(t^\pm , \cdot )&=\left( \left( \mathbb {1}_{\{x-a\ge \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda ,t_0}v^{t_0}+\left( \mathbb {1}_{\{x-a < \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda ,a}v^a \right) (t^\pm ,\cdot ), \end{aligned}$$
(5.8a)
$$\begin{aligned} v(\cdot , x^\pm )&=\left( \left( \mathbb {1}_{\{x-a\ge \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda ,t_0}v^{t_0}+\left( \mathbb {1}_{\{x-a < \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda ,a}v^a \right) (\cdot ,x^\pm ). \end{aligned}$$
(5.8b)
Then, the solution to the differential Eq. (5.5) at the right boundary with \(\lambda >0\) takes the form:
$$\begin{aligned} v(\cdot , b^-)&=\left( \left( \mathbb {1}_{\left( t_0,t_0 + \tfrac{b-a}{\lambda } \right) }\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda ,t_0} v^{t_0}+\left( \mathbb {1}_{\left( t_0 + \tfrac{b-a}{\lambda }, \infty \right) }\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda ,a}v^a \right) (\cdot ,b^-), \end{aligned}$$
which can be put in the form
$$\begin{aligned} v(\cdot ,b^-)=\left( {\mathcal {S}}_{\text {time}}^{\lambda ,a} v^a\right) (\cdot ,b^-), \end{aligned}$$
(5.9)
where \(\left( {\mathcal {S}}_{\text {time}}^{\lambda ,a}v^a\right) (\cdot ,b^-):=\left( {\mathcal {S}}_{\text {space}}^{\lambda ,t_0} v^{t_0}\right) (\cdot ,b^-)\) on \((t_0, t_0+\tfrac{b-a}{\lambda })\) with the convention that \(v^{t_0}=0\) outside (a, b).
Now assume \(\lambda <0\) and let \(v^{t_0}\) and \(v^b\) be given as in (5.6) and (5.7), respectively, and let \(v^{t_0}\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(X)\) and \(v^b\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\). The solution formulae to Eq. (5.5) with \(\lambda <0\) are now of the form:
$$\begin{aligned} v(t^\pm ,\cdot )&=\left( \left( \mathbb {1}_{\{x-b\le \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda ,t_0} v^{t_0}+\left( \mathbb {1}_{\{x-b> \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda ,b}v^b\right) (t^\pm ,\cdot ),\\ v(\cdot , x^\pm )&=\left( \left( \mathbb {1}_{\{x-b\le \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda ,t_0}v^{t_0}+\left( \mathbb {1}_{\{x-b > \lambda (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda ,b}v^b \right) (\cdot ,x^\pm ). \end{aligned}$$
Similarly, the solution to the differential Eq. (5.5) with \(\lambda <0\) at the left boundary can be written as:
$$\begin{aligned} v(\cdot , a^+)&=\left( \left( \mathbb {1}_{\left( t_0,t_0 + \tfrac{b-a}{-\lambda } \right) }\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda ,t_0}v^{t_0}+\left( \mathbb {1}_{\left( t_0 + \tfrac{b-a}{-\lambda }, \infty \right) }\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda ,b}v^b\right) (\cdot ,a^+), \end{aligned}$$
which is written as
$$\begin{aligned} v(\cdot ,a^+)={\mathcal {S}}_{\text {time}}^{\lambda ,b} v^b(\cdot ,a^+), \end{aligned}$$
(5.10)
where \(\left( {\mathcal {S}}_{\text {time}}^{\lambda ,b} v^b\right) (\cdot ,a^+):=\left( {\mathcal {S}}_{\text {space}}^{\lambda ,t_0} v^{t_0}\right) (\cdot ,a^+)\) on \((t_0, t_0+\tfrac{b-a}{-\lambda })\) with the convention that \(v^{t_0}=0\) outside (a, b).
As a system of PDEs with boundary conditions, we consider
$$\begin{aligned}&\partial _t {\mathbf {u}}+ {\mathbf {A}} \partial _x {\mathbf {u}}&= {\mathbf {0}}, \end{aligned}$$
(5.11a)
$$\begin{aligned} \mathbf{I}.C.&\quad {\mathbf {u}}(t_0^+,\cdot )&= {\mathbf {u}}^{t_0}, \end{aligned}$$
(5.11b)
$$\begin{aligned} \mathbf{B}.C.&\quad {\mathbf {P}}_a {\mathbf {u}}(\cdot ,a^+) = {\mathbf {b}}^a, \quad&\text { and } \quad {\mathbf {P}}_b {\mathbf {u}}(\cdot ,b^-) = {\mathbf {b}}^b, \end{aligned}$$
(5.11c)
with the unknown \({\mathbf {u}}\in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( \left( t_0,\infty \right) \times (a,b)\right) \right) ^n\), the initial condition \({\mathbf {u}}^{t_0} \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( a,b\right) \right) ^n\) and \({\mathbf {b}}^a \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( \left( t_0,\infty \right) \right) \right) ^{r}\), \({\mathbf {b}}^b \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( \left( t_0,\infty \right) \right) \right) ^{n-r}\) are left and right boundary conditions with \({\mathbf {P}}_a\in {\mathbb {R}}^{r\times n},\) and \({\mathbf {P}}_b\in {\mathbb {R}}^{(n-r)\times n}\).
As in Sect. 3 and with Assumption 1, the system is decomposed into its distributional characteristic variables \({\mathbf {v}}\in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( \left( t_0,\infty \right) \times \left( a,b\right) \right) \right) ^n\) with the initial condition
where \({\mathbf {v}}_-^{t_0} \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( a,b\right) \right) ^{n-r}\), \({\mathbf {v}}_+^{t_0} \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( a,b\right) \right) ^{r}\) and the boundary conditions take the form:
$$\begin{aligned} {\mathbf {M}}{\mathbf {v}}(\cdot ,a^+) = {\mathbf {b}}^a, \quad \text { and } \quad {\mathbf {N}}{\mathbf {v}}(\cdot ,b^-) = {\mathbf {b}}^b, \end{aligned}$$
where the boundary conditions for the right- and left-going waves can be expressed as:
$$\begin{aligned} {\mathbf {v}}_+ (\cdot ,a^+)&= \widetilde{{\mathbf {b}}}_a, \end{aligned}$$
(5.13a)
$$\begin{aligned} {\mathbf {v}}_- (\cdot ,b^-)&= \widetilde{{\mathbf {b}}}_b, \end{aligned}$$
(5.13b)
with \(\widetilde{{\mathbf {b}}}_a=\left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\right) ^r, \ \widetilde{{\mathbf {b}}}_b=\left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\right) ^{n-r}\), \({\mathbf {v}}=({\mathbf {v}}^-,{\mathbf {v}}^+)^\top \) and \({\mathbf {v}}^{t_0}=({\mathbf {v}}^{t_0}_-,{\mathbf {v}}^{t_0}_+)^\top \) where \({\mathbf {v}}_- \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( (t_0,\infty ) \times (a,b) \right) \right) ^{n-r}\) stands for the left-going waves, whilst \({\mathbf {v}}_+ \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }\left( ( t_0,\infty ) \times (a,b) \right) \right) ^{r}\) for the right-going waves.
The distributional solution \({\mathbf {v}}\) to the decomposed system of (5.11a), as was done similarly to (3.3a), with the initial condition (5.12) and boundary conditions (5.13a)–(5.13b) can be written in terms of the solutions of the left- and right-going waves
The distributional solution \({\mathbf {u}}\) to the IBVP system (5.11a)-(5.11b)-(5.11c) is now formulated via inversion of the distributional characteristic variables \({\mathbf {u}}={\mathbf {R}}{\mathbf {v}}\). Let \(\mathbf {\Pi }_p:= {\mathbf {R}}\; \mathrm {diag}({\mathbf {e}}_p)\; {\mathbf {R}}^{-1}\) with \(\mathrm {diag}(\mathbf {e_p}) \in {\mathbb {R}}^n\) is the p-th directional unit vector. The solution is
$$\begin{aligned} {\mathbf {u}}&=\sum _{i \in K^-} \mathbf {\Pi }_i \left( \left( \mathbb {1}_{\{x-b\le \lambda _i (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda _i,t_0} {\mathbf {u}}^{t_0} + \left( \mathbb {1}_{\{x-b > \lambda _i (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda _i,b} {\mathbf {u}}^b \right) \\&\quad + \sum _{j\in K^+} \mathbf {\Pi }_j \left( \left( \mathbb {1}_{\{x-a\ge \lambda _i (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {space}}^{\lambda _j,t_0} {\mathbf {u}}^{t_0}+\left( \mathbb {1}_{\{x-a < \lambda _i (t-t_0)\}}\right) _{\mathbb {D}}{\mathcal {S}}_{\text {time}}^{\lambda _j,a} {\mathbf {u}}^a \right) , \end{aligned}$$
or, in the compact form
$$\begin{aligned} {\mathbf {u}}=\sum _{i \in K^-} \mathbf {\Pi }_i \left( {\mathcal {S}}_{\text {time}}^{\lambda _i,b} {\mathbf {u}}^b \right) + \sum _{j\in K^+} \mathbf {\Pi }_j \left( {\mathcal {S}}_{\text {time}}^{\lambda _j,a} {\mathbf {u}}^a \right) , \end{aligned}$$
(5.15)
where
$$\begin{aligned} {\left\{ \begin{array}{ll} \left( {\mathcal {S}}_{\text {time}}^{\Lambda ^-,b} {\mathbf {u}}^b\right) := \sum _{i\in K^-} \mathbf {\Pi }_i \left( {\mathcal {S}}_{\text {space}}^{\lambda _i,t_0} {\mathbf {u}}^{t_0}\right) , &{} \text { on } (t_0, t_0+\tfrac{b-x}{-\lambda _i}),\\ \left( {\mathcal {S}}_{\text {time}}^{\Lambda ^+,a} {\mathbf {u}}^a\right) :=\sum _{j\in K^+} \mathbf {\Pi }_j \left( {\mathcal {S}}_{\text {space}}^{\lambda _j,t_0} {\mathbf {u}}^{t_0} \right) , &{} \text { on } (t_0,t_0+\tfrac{x-a}{\lambda _j}), \end{array}\right. } \end{aligned}$$
(5.16)
with the convention that \({\mathbf {u}}^{t_0} = 0\) outside (a, b).
At the left and right end of the spatial domain, the distributional solution \({\mathbf {u}}\) is as follows:
where \({\mathbf {u}}^a:={\mathbf {u}}(\cdot ,a^+)\), \({\mathbf {u}}^b:={\mathbf {u}}(\cdot ,b^-)\) and
$$\begin{aligned} {\left\{ \begin{array}{ll} \left( {\mathcal {S}}_{\text {time}}^{\Lambda ^-,b} {\mathbf {u}}^b\right) (\cdot , a^+) := \sum _{i\in K^-} \mathbf {\Pi }_i \left( {\mathcal {S}}_{\text {space}}^{\lambda _i,t_0} {\mathbf {u}}^{t_0}\right) (\cdot , a^+), &{}\quad \text { on } (t_0, t_0+\tfrac{b-a}{-\lambda _i}),\\ \left( {\mathcal {S}}_{\text {time}}^{\Lambda ^+,a} {\mathbf {u}}^a\right) (\cdot , b^-):=\sum _{j\in K^+} \mathbf {\Pi }_j \left( {\mathcal {S}}_{\text {space}}^{\lambda _j,t_0} {\mathbf {u}}^{t_0} \right) (\cdot , b^-), &{}\quad \text { on } (t_0,t_0+\tfrac{b-a}{\lambda _j}), \end{array}\right. } \end{aligned}$$
(5.18)
with the convention that \({\mathbf {u}}^{t_0} = 0\) outside (a, b).
Remark 20
Similar to the 1D time shift defined in Remark 6, we define the 1D distributional time shift \({\mathcal {S}}_{\text {time}}^{\tau }\) for \(D\in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\). Let \(D \in {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\) be given by \(D = d_{\mathbb {D}}+ \sum _{t^*\in T^*} D_{t^*}\), where \(d\in {\mathcal {C}}_{\text {pw}}^{\infty }(T)\), \(T^*\subset T\) is a locally finite set, and for each \(t^*\in T^*\) we have \(n^{t^*}\in {\mathbb {N}}\), \(c_i^{t^*}\in {\mathbb {R}}\), \(i=0,1,\ldots ,n^{t^*}\) such that
$$\begin{aligned} D_{t^*} = \sum _{i=0}^{n^{t^*}} c_i^{t^*} \partial _t^{(i)} \delta _{t^*} \ . \end{aligned}$$
Then, the 1D distributional time shift of D is given by
$$\begin{aligned} {\mathcal {S}}^{\tau }_{\text {time}} D := ({\mathcal {S}}^{\tau }_{\text {time}} d)_{\mathbb {D}}+ \sum _{t^*\in T^*} \sum _{i=0}^{n^{t^*}} c_i^{t^*} \partial _t ^{(i)} {\mathcal {S}}^{\tau }_{\text {time}}\delta _{t^*}. \end{aligned}$$
Remark 21
Equation (5.17) can now be written in compressed form in terms of \({\mathbf {u}}_{ab} \in \left( {\mathbb {D}}_{\text {pw}{\mathcal {C}}^\infty }(T)\right) ^{2n}\) and the 1D distributional time shift \({\mathcal {S}}_{\text {time}}^{\tau }\) as
$$\begin{aligned} {\mathbf {u}}_{ab} = {\mathbf {F}} {\left[ {\begin{matrix} {\mathbf {b}}^a \\ {\mathbf {b}}^b \end{matrix}}\right] } + \sum _{k=1}^n {\mathbf {D}}_k {\mathcal {S}}_{\text {time}}^{\tau _k} {\mathbf {u}}_{ab}, \end{aligned}$$
(5.19)
where \(\tau _k= \tfrac{b-a}{\mathop {\mathrm {sgn}}(\lambda _k) \lambda _k}\), \({\mathbf {F}}= {\left[ {\begin{matrix} {\mathbf {F}}_a&{}{\mathbf {0}}_{n, n-r}\\ {\mathbf {0}}_{n, r}&{} {\mathbf {F}}_b \end{matrix}}\right] },\) \({\mathbf {D}}_k = {\left[ {\begin{matrix} {\mathbf {0}}_{n, n} &{}\quad {\mathbf {D}}_k^{ab} \\ {\mathbf {D}}_k^{ba} &{}\quad {\mathbf {0}}_{n, n} \end{matrix}}\right] }\), \(k=1,2,\ldots , n\), where the matrices \({\mathbf {F}}_a, {\mathbf {F}}_b, {\mathbf {D}}_k^{ab}, {\mathbf {D}}_k^{ba}\) are given as in (3.11). The extension of the initial conditions as the boundary conditions for the negative times is described in (5.18). Hence, the equality (5.19) follows from the equations in (5.17).
So far we have constructed a piecewise-smooth distributional solution to the hyperbolic PDE (5.11a). This solution is unique due to the following theorem.
Theorem 22
(Uniqueness of the distributional solution) The solutions to (5.11a) are unique in the space of piecewise-smooth distributions.
Proof
As the PDE is linear, it is sufficient to show that \(u \equiv 0\) is the only solution to the problem with zero initial and boundary conditions. First, we verify that \(\delta _L\) can only be a solution to the i-th characteristic component of the PDE, if the segment has slope \(\lambda _i\) and crosses the boundary or initial time line
$$\begin{aligned} \left( \partial _t\delta _L\right) \left( \varphi \right)&= \int _{t_0}^{t_1}\partial _1 \varphi (t,x_0+\tfrac{\Delta x}{\Delta t}(t-t_0)) \sqrt{1+\tfrac{\Delta x^2}{\Delta t^2}}\,\text {d} t\\ \left( \partial _x\delta _L\right) \left( \varphi \right)&= \int _{t_0}^{t_1}\partial _2 \varphi (t,x_0+\tfrac{\Delta x}{\Delta t}(t-t_0)) \sqrt{1+\tfrac{\Delta x^2}{\Delta t^2}}\,\text {d} t\\ \left( \partial _t\delta _L+\lambda _i \partial _x\delta _L\right) (\varphi )&= \sqrt{1+\tfrac{\Delta x^2}{\Delta t^2}} \int _{t_0}^{t_1} \tfrac{\text {d}}{\text {d} t}\varphi (t,x_0+\tfrac{\Delta x}{\Delta t}(t-t_0))\\&\qquad + \left( \lambda _i - \tfrac{\Delta x}{\Delta t}\right) \partial _2 \varphi (t,x_0 +\tfrac{\Delta x}{\Delta t}(t-t_0)) \,\text {d} t\\&= \sqrt{1+\tfrac{\Delta x^2}{\Delta t^2}} \Big (\varphi (t_1,x_1)-\varphi (t_0,x_0) \\&\qquad + \left( \lambda _i - \tfrac{\Delta x}{\Delta t}\right) \int _{t_0}^{t_1}\partial _2 \varphi (t,x_0+\tfrac{\Delta x}{\Delta t}(t-t_0)) \,\text {d} t\Big ) \end{aligned}$$
This expression is only zero for all \(\varphi \), if \(\lambda _i = \frac{\Delta x}{\Delta t}\) and \((t_0,x_0)\) as well as \((t_1,x_1)\) are outside of the support of the \(\varphi \). Thus, the line has to have the slope according to the characteristic speed, and the line has to fully cross the considered domain. But at the points where the line hits the initial time or the boundaries of the domain, it has to satisfy the imposed conditions. Therefore, the strength of the impulse is equal to zero, i.e. the factor c for \(\delta _L\) is zero. Due to linearity, the above computation can be extended directly to any combination of spatial and temporal derivatives of \(\delta _L\), which concludes the proof.\(\square \)