Skip to main content
Log in

A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this article, we give a necessary and sufficient condition of Kalman type for the indirect controllability of systems of groups of linear operators, under some “regularity and locality” conditions on the control operator that will be made precise later and fit very well the case of distributed controls. Moreover, in the case of first order in time systems, when the Kalman rank condition is not satisfied, we characterize exactly the initial conditions that can be controlled. Some applications to the control of systems of Schrödinger or wave equations are provided. The main tool used here is the fictitious control method coupled with the proof of an algebraic solvability property for some related underdetermined system and some regularity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alabau-Boussouira F (2013) A hierarchic multi-level energy method for the control of bidiagonal and mixed \(n\)-coupled cascade systems of PDE’s by a reduced number of controls. Adv Differ Equ 18(11–12):1005–1072

    MathSciNet  MATH  Google Scholar 

  2. Alabau-Boussouira F, Coron J-M, Olive G (2017) Internal controllability of first order quasi-linear hyperbolic systems with a reduced number of controls. SIAM J Control Optim 55(1):300–323

    Article  MathSciNet  MATH  Google Scholar 

  3. Alabau-Boussouira F, Léautaud M (2013) Indirect controllability of locally coupled wave-type systems and applications. J Math Pures Appl (9) 99(5):544–576

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammar-Khodja F, Benabdallah A, Dupaix C (2006) Null-controllability of some reaction-diffusion systems with one control force. J Math Anal Appl 320(2):928–943

    Article  MathSciNet  MATH  Google Scholar 

  5. Ammar Khodja F, Benabdallah A, Dupaix C, González-Burgos M (2009) A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ Equ Appl 1(3):427–457

    MathSciNet  MATH  Google Scholar 

  6. Ammar Khodja F, Benabdallah A, Dupaix C, González-Burgos M (2009) A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems. J Evol Equ 9(2):267–291

    Article  MathSciNet  MATH  Google Scholar 

  7. Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2011) The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J Math Pures Appl (9) 96(6):555–590

    Article  MathSciNet  MATH  Google Scholar 

  8. Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2011) Recent results on the controllability of linear coupled parabolic problems: a survey. Math Control Relat Fields 1(3):267–306

    Article  MathSciNet  MATH  Google Scholar 

  9. Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2014) Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences. J Funct Anal 267(7):2077–2151

    Article  MathSciNet  MATH  Google Scholar 

  10. Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2016) New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence (English summary). J Math Anal Appl 444(2):1071–1113

  11. Ammar-Khodja F, Chouly F, Duprez M (2016) Partial null controllability of parabolic linear systems (English summary). Math Control Relat Fields 6(2):185–216

    Article  MathSciNet  MATH  Google Scholar 

  12. Anantharaman N, Léautaud M, Macià F (2016) Wigner measures and observability for the Schrödinger equation on the disk (English summary). Invent Math 206(2):485–599

  13. Benabdallah A, Boyer F, González-Burgos M, Olive G (2014) Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the \(N\)-dimensional boundary null controllability in cylindrical domains. SIAM J Control Optim 52(5):2970–3001

    Article  MathSciNet  MATH  Google Scholar 

  14. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30(5):1024–1065

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyer F, Olive G (2014) Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Math Control Relat Fields 4(3):263–287

    Article  MathSciNet  MATH  Google Scholar 

  16. Coron J-M, Guerrero S, Rosier L (2010) Null controllability of a parabolic system with a cubic coupling term. SIAM J Control Optim 48(8):5629–5653

    Article  MathSciNet  MATH  Google Scholar 

  17. Coron J-M, Lissy P (2014) Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components. Invent Math 198(3):833–880

    Article  MathSciNet  MATH  Google Scholar 

  18. Coron Jean-Michel (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Sign Syst 5(3):295–312

    Article  MathSciNet  MATH  Google Scholar 

  19. Coron J-M (2007) Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. Am Math Soc, Providence, RI

  20. Cîndea N, Tucsnak M (2010) Internal exact observability of a perturbed Euler–Bernoulli equation. Ann Acad Rom Sci Ser Math Appl 2(2):205–221

    MathSciNet  MATH  Google Scholar 

  21. Dehman B, Lebeau G (2009) Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J Control Optim 48(2):521–550

    Article  MathSciNet  MATH  Google Scholar 

  22. Duprez M, Lissy P (2016) Indirect controllability of some linear parabolic systems of m equations with m-1 controls involving coupling terms of zero or first order. J Math Pures Appl (9) 106(5):905–934

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehman B, Le Rousseau J, Léautaud M (2014) Controllability of two coupled wave equations on a compact manifold. Arch Ration Mech Anal 211(1):113–187

    Article  MathSciNet  MATH  Google Scholar 

  24. Sylvain E, Enrique Z (2010) A systematic method for building smooth controls for smooth data. Discrete Continuous Dyn Syst Ser B 14(4):1375–1401

    Article  MathSciNet  MATH  Google Scholar 

  25. Ervedoza S, Zuazua E (2011) Sharp observability estimates for heat equations. Arch Ration Mech Anal 202(3):975–1017

    Article  MathSciNet  MATH  Google Scholar 

  26. González-Burgos M, de Teresa L (2010) Controllability results for cascade systems of \(m\) coupled parabolic PDEs by one control force. Port Math 67(1):91–113

    Article  MathSciNet  MATH  Google Scholar 

  27. González-Burgos M, Pérez-García R (2006) Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptot Anal 46(2):123–162

    MathSciNet  MATH  Google Scholar 

  28. Gromov M (1986) Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin

  29. Komornik V, Loreti P (2005) Fourier series in control theory. Springer monographs in mathematics. Springer, New York

    MATH  Google Scholar 

  30. Lebeau G (1992) Contrôle de l’équation de Schrödinger. J Math Pures Appl (9) 71(3):267–291

    MathSciNet  MATH  Google Scholar 

  31. Lopez-Garcia M, Mercado A, de Teresa L (2015) Null controllability of a cascade system of Schrdödinger equations (Submitted)

  32. Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées. Masson, Paris, 1988. Contrôlabilité exacte. (Exact controllability), With appendices by Zuazua E, Bardos C, Lebeau G and Rauch J

  33. Lissy P (2013) Sur la contrôlabilité et son coût pour quelques équations aux dérivées partielles. PhD thesis, Université Pierre et Marie Curie

  34. Li T, Rao B (2015) On the exactly synchronizable state to a coupled system of wave equations. Port Math 72(2–3):83–100

    Article  MathSciNet  MATH  Google Scholar 

  35. Li T, Rao B (2016) Criteria of Kalman’s type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls. SIAM J Control Optim 54(1):49–72

    Article  MathSciNet  MATH  Google Scholar 

  36. Li T, Rao B (2016) Exact synchronization by groups for a coupled system of wave equations with Dirichlet boundary controls. J Math Pures Appl (9) 105(1):86–101

    Article  MathSciNet  MATH  Google Scholar 

  37. Miller L (2006) The control transmutation method and the cost of fast controls. SIAM J Control Optim 45(2):762–772

    Article  MathSciNet  MATH  Google Scholar 

  38. Phung KD (2001) Observability and control of Schrödinger equations. SIAM J Control Optim 40(1):211–230

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosier L, de Teresa L (2011) Exact controllability of a cascade system of conservative equations. C R Math Acad Sci Paris 349(5–6):291–296

    Article  MathSciNet  MATH  Google Scholar 

  40. Silverman LM, Meadows HE (1965) Controllability and time-variable unilateral networks. IEEE Trans Circ Theory CT 12:308–314

    Article  MathSciNet  Google Scholar 

  41. Zuazua E (2016) Stable observation of additive superpositions of Partial differential equations. Syst Control Lett 93:21–29

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Camille Laurent for interesting discussions concerning Sect. 4 of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lissy.

Ethics declarations

Funding

Pierre Lissy is partially supported by the project IFSMACS funded by the French Agence Nationale de la Recherche, 2015–2019 (Reference: ANR-15-CE40-0010).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liard, T., Lissy, P. A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups. Math. Control Signals Syst. 29, 9 (2017). https://doi.org/10.1007/s00498-017-0193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-017-0193-x

Keywords

Mathematics Subject Classification

Navigation