Adachi S et al (2011) Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proc Natl Acad Sci 108:10004–10009. https://doi.org/10.1073/pnas.1103584108
Article
PubMed
PubMed Central
Google Scholar
Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization—caught in the act. Trends Plant Sci 13:437–443. https://doi.org/10.1016/j.tplants.2008.05.011
CAS
Article
PubMed
Google Scholar
Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721. https://doi.org/10.1093/nar/12.22.8711
CAS
Article
PubMed
PubMed Central
Google Scholar
Bhowmik P et al (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8:6502. https://doi.org/10.1038/s41598-018-24690-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Birch RG (1997) PLANT TRANSFORMATION: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326. https://doi.org/10.1146/annurev.arplant.48.1.297
CAS
Article
PubMed
Google Scholar
Borg M, Twell D (2010) Life after meiosis: patterning the angiosperm male gametophyte. Biochem Soc Trans 38(2):577–582. https://doi.org/10.1042/BST0380577
CAS
Article
PubMed
Google Scholar
Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425. https://doi.org/10.1007/s001220050758
CAS
Article
PubMed
Google Scholar
Brewbaker JR (1967) The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Am J Bot. https://doi.org/10.2307/2440530
Article
Google Scholar
Chesnokov YV, Manteuffel R (2000) Kanamycin resistance of germinating pollen of transgenic plants. Sex Plant Reprod 12:232–236. https://doi.org/10.1007/s004970050006
CAS
Article
Google Scholar
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
CAS
Article
PubMed
Google Scholar
Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143
CAS
Article
PubMed
PubMed Central
Google Scholar
Cooper CA et al (2017) Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Res 26:331–347. https://doi.org/10.1007/s11248-016-0003-0
CAS
Article
PubMed
Google Scholar
Dresselhaus T, Sprunck S, Wessel GM (2016) Fertilization mechanisms in flowering plants. Curr Biol CB 26:R125-139. https://doi.org/10.1016/j.cub.2015.12.032
CAS
Article
PubMed
Google Scholar
Eady C, Lindsey K, Twell D (1995) The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7:65–74. https://doi.org/10.1105/tpc.7.1.65
CAS
Article
PubMed
PubMed Central
Google Scholar
Eapen S (2011) Pollen grains as a target for introduction of foreign genes into plants: an assessment. Physiol Mol Biol Plants Int J Funct Plant Biol 17:1–8. https://doi.org/10.1007/s12298-010-0042-6
Article
Google Scholar
Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X (2020) A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics 10:5532–5549. https://doi.org/10.7150/thno.43465
CAS
Article
PubMed
PubMed Central
Google Scholar
Fossi M, Amundson K, Kuppu S, Britt A, Comai L (2019) Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiol 180:78–86. https://doi.org/10.1104/pp.18.00906
CAS
Article
PubMed
PubMed Central
Google Scholar
Friedman WE (1999) Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126:1065–1075
CAS
Article
PubMed
Google Scholar
Hackenberg D, Twell D (2019) Chapter eleven—the evolution and patterning of male gametophyte development. In: Grossniklaus U (ed) current topics in developmental biology, vol 131. Academic Press, pp 257–298. https://doi.org/10.1016/bs.ctdb.2018.10.008
Hamada H, Linghu Q, Nagira Y, Miki R, Taoka N, Imai R (2017) An in planta biolistic method for stable wheat transformation. Sci Rep 7:11443. https://doi.org/10.1038/s41598-017-11936-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Han Y-J, Kim J-I (2019) Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnol Rep 13:447–457. https://doi.org/10.1007/s11816-019-00575-8
Article
Google Scholar
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832. https://doi.org/10.1023/A:1006496308160
CAS
Article
PubMed
Google Scholar
Hoekstra FA, Bruinsma J (1975) Respiration and vitality of binucleate and trinucleate pollen. Physiol Plant 34:221–225. https://doi.org/10.1111/j.1399-3054.1975.tb03825.x
Article
Google Scholar
Ikeuchi M et al (2015) PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat Plants 1:15089. https://doi.org/10.1038/nplants.2015.89
CAS
Article
PubMed
Google Scholar
Koslova A et al (2020) Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc Natl Acad Sci USA 117:2108–2112. https://doi.org/10.1073/pnas.1913827117
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–4179. https://doi.org/10.1242/dev.127613
CAS
Article
PubMed
PubMed Central
Google Scholar
Lea R, Niakan K (2019) Human germline genome editing. Nat Cell Biol 21:1479–1489. https://doi.org/10.1038/s41556-019-0424-0
CAS
Article
Google Scholar
Li J-F et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotech 31:688–691. https://doi.org/10.1038/nbt.2654
CAS
Article
Google Scholar
Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu JL, Gao C (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13:413–430. https://doi.org/10.1038/nprot.2017.145
CAS
Article
PubMed
Google Scholar
Ling X et al (2020) Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci Adv. https://doi.org/10.1126/sciadv.aaz0051
Article
PubMed
PubMed Central
Google Scholar
Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7:2902–2906. https://doi.org/10.4161/cc.7.18.6679
CAS
Article
PubMed
Google Scholar
Martin-Ortigosa S, Wang K (2014) Proteolistics: a biolistic method for intracellular delivery of proteins. Transgenic Res 23:743–756. https://doi.org/10.1007/s11248-014-9807-y
CAS
Article
PubMed
Google Scholar
Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M, Kurihara D, Kasahara RD, Higashiyama T (2013) Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev Cell 25:317–323. https://doi.org/10.1016/j.devcel.2013.03.013
CAS
Article
PubMed
Google Scholar
Mizuta Y, Higashiyama T (2018) Chemical signaling for pollen tube guidance at a glance. J Cell Sci. https://doi.org/10.1242/jcs.208447
Article
PubMed
Google Scholar
Mizuta Y, Kurihara D, Higashiyama T (2015) Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma 252:1231–1240. https://doi.org/10.1007/s00709-014-0754-5
CAS
Article
PubMed
Google Scholar
Moon SB, Kim DY, Ko J-H, Kim J-S, Kim Y-S (2019) Improving CRISPR genome editing by engineering guide RNAs. Trends Biotechnol 37:870–881. https://doi.org/10.1016/j.tibtech.2019.01.009
CAS
Article
PubMed
Google Scholar
Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotech 31:691–693. https://doi.org/10.1038/nbt.2655
CAS
Article
Google Scholar
Newell CA (2000) Plant transformation technology. Mol Biotechnol 16:53–65. https://doi.org/10.1385/mb:16:1:53
CAS
Article
PubMed
Google Scholar
Okuda S et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361. https://doi.org/10.1038/nature07882
CAS
Article
PubMed
Google Scholar
Okuzaki A, Kida S, Watanabe J, Hirasawa I, Tabei Y (2013) Efficient plastid transformation in tobacco using small gold particles (0.07–0.3 μm). Plant Biotechnol 30:65–72. https://doi.org/10.5511/plantbiotechnology.12.1227a
CAS
Article
Google Scholar
Ordon J, Bressan M, Kretschmer C, Dall’Osto L, Marillonnet S, Bassi R, Stuttmann J (2020) Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation. Funct Integr Genom 20:151–162. https://doi.org/10.1007/s10142-019-00665-4
CAS
Article
Google Scholar
Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400. https://doi.org/10.1093/pcp/pcu170
CAS
Article
PubMed
Google Scholar
Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. https://doi.org/10.1038/srep26685
CAS
Article
PubMed
PubMed Central
Google Scholar
Osakabe K et al (2020) Genome editing in plants using CRISPR type I-D nuclease. Commun Biol 3:648. https://doi.org/10.1038/s42003-020-01366-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. https://doi.org/10.1186/1471-2229-6-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Paungfoo-Lonhienne C, Lonhienne TG, Mudge SR, Schenk PM, Christie M, Carroll BJ, Schmidt S (2010) DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth. Plant Physiol 153:799–805. https://doi.org/10.1104/pp.110.154963
CAS
Article
PubMed
PubMed Central
Google Scholar
Resch T, Touraev A (2010) Pollen transformation technologies. In: Plant transformation technologies, pp 83–91. https://doi.org/10.1002/9780470958988.ch5
Russell SD, Jones DS (2015) The male germline of angiosperms: repertoire of an inconspicuous but important cell lineage. Front Plant Sci 6:173–173. https://doi.org/10.3389/fpls.2015.00173
Article
PubMed
PubMed Central
Google Scholar
Sachin Rustgi HL (2020) Biolistic DNA delivery in plants. Methods in molecular biology, Humana, New York, NY
Book
Google Scholar
Sanford JC (2000) The development of the biolistic process. Vitro Cell Dev Biol Plant 36:303–308. https://doi.org/10.1007/s11627-000-0056-9
Article
Google Scholar
Stöger E, Fink C, Pfosser M, Heberle-Bors E (1995) Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep 14:273–278. https://doi.org/10.1007/BF00232027
Article
PubMed
Google Scholar
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945. https://doi.org/10.1104/pp.15.00793
CAS
Article
PubMed
PubMed Central
Google Scholar
Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274. https://doi.org/10.1038/ncomms13274
CAS
Article
PubMed
PubMed Central
Google Scholar
Tian HQ, Yuan T, Russell SD (2005) Relationship between double fertilization and the cell cycle in male and female gametes of tobacco. Sex Plant Reprod 17:243–252. https://doi.org/10.1007/s00497-004-0233-9
Article
Google Scholar
Toda E et al (2019) An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat Plants 5:363–368. https://doi.org/10.1038/s41477-019-0386-z
CAS
Article
PubMed
Google Scholar
Touraev A, Stöger E, Voronin V, Heberle-Bors E (1997) Plant male germ line transformation. Plant J 12:949–956. https://doi.org/10.1046/j.1365-313X.1997.12040949.x
CAS
Article
Google Scholar
Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58:46–56. https://doi.org/10.1093/pcp/pcw191
CAS
Article
PubMed
Google Scholar
Vejlupkova Z, Warman C, Sharma R, Scheller HV, Mortimer JC, Fowler JE (2020) No evidence for transient transformation via pollen magnetofection in several monocot species. Nat Plants 6:1323–1324. https://doi.org/10.1038/s41477-020-00798-6
Article
PubMed
Google Scholar
Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 6:419–426. https://doi.org/10.1038/nprot.2011.309
CAS
Article
PubMed
Google Scholar
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918. https://doi.org/10.1016/j.cell.2013.04.025
CAS
Article
PubMed
PubMed Central
Google Scholar
Wilkinson JE, Twell D, Lindsey K (1997) Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J Exp Bot 48:265–275. https://doi.org/10.1093/jxb/48.2.265
CAS
Article
Google Scholar
Woo JW et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotech 33:1162–1164. https://doi.org/10.1038/nbt.3389
CAS
Article
Google Scholar
Yu C et al (2015) Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16:142–147. https://doi.org/10.1016/j.stem.2015.01.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. https://doi.org/10.1038/ncomms12617
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang B, Yang T, Zhang J, Liu B, Zhan X, Liang Y (2020) The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato. Hortic Res 7:133. https://doi.org/10.1038/s41438-020-00366-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao X et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants. https://doi.org/10.1038/s41477-017-0063-z
Article
PubMed
Google Scholar
Zhao P, Zhou X, Shi C, Sun MX (2020) Manual isolation of living early embryos from tobacco seeds. Methods Mol Biol 2122:101–111. https://doi.org/10.1007/978-1-0716-0342-0_8
CAS
Article
PubMed
Google Scholar
Zheng X et al (2020) The improvement of CRISPR-Cas9 system with ubiquitin-associated domain fusion for efficient plant genome editing. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00621
Article
PubMed
PubMed Central
Google Scholar
Zhou L-Z, Dresselhaus T (2019) Chapter seventeen—friend or foe: signaling mechanisms during double fertilization in flowering seed plants. In: Grossniklaus U (ed) Current topics in developmental biology, vol 131. Academic Press, pp 453–496.https://doi.org/10.1016/bs.ctdb.2018.11.013
Zuberi MI, Dickinson HG (1985) Pollen-stigma interaction in Brassica. III. Hydration of the pollen grains. J Cell Sci 76:321–336
CAS
Article
PubMed
Google Scholar