Skip to main content
Log in

The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Key message

FT gene is expressed in leaves and buds and is involved in floral meristem determination and bud development in sweet cherry.

Abstract

In woody fruit perennial trees, floral determination, dormancy and bloom, depends on perception of different environmental and endogenous cues which converge to a systemic signaling gene known as FLOWERING LOCUS T (FT). In long-day flowering plants, FT is expressed in the leaves on long days. The protein travels through the phloem to the shoot apical meristem, where it induces flower determination. In perennial plants, meristem determination and flowering are separated by a dormancy period. Meristem determination takes place in summer, but flowering occurs only after a dormancy period and cold accumulation during winter. The roles of FT are not completely clear in meristem determination, dormancy release, and flowering in perennial plants. We cloned FT from sweet cherry (Prunus avium) and analyzed its expression pattern in leaves and floral buds during spring and summer. Phylogenetic analysis shows high identity of the FT cloned sequence with orthologous genes from other Rosaceae species. Our results show that FT is expressed in both leaves and floral buds and increases when the daylight reached 12 h. The peak in FT expression was coincident with floral meristem identity genes expression and morphological changes typical of floral meristem determination. The Edi-0 Arabidopsis ecotype, which requires vernalization to flower, was transformed with a construct for overexpression of PavFT. These transgenic plants showed an early-flowering phenotype without cold treatment. Our results suggest that FT is involved in floral meristem determination and bud development in sweet cherry. Moreover, we show that FT is expressed in both leaves and floral buds in this species, in contrast to annual plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pinheiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626

    Article  CAS  PubMed  Google Scholar 

  • Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  CAS  PubMed  Google Scholar 

  • Blumel M, Dally N, Jung C (2015) Flowering time regulation in crops-what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129

    Article  PubMed  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J Cell Mol Biol 24:591–599

    Article  CAS  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cooke JE, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  CAS  PubMed  Google Scholar 

  • Esumi T, Hagihara C, Kitamura Y, Yamane H, Tao R (2009) Identification of an FT ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). J Hortic Sci Biotechnol 84:149–154

    Article  CAS  Google Scholar 

  • Fadón E, Herrero M, Rodrigo J (2015) Flower development in sweet cherry framed in the BBCH scale. Sci Hortic 192:141–147

    Article  Google Scholar 

  • Gibeaut DM, Hulett J, Cramer GR, Seemann JR (1997) Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol 115:317–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimond C, Andrews P, Lang G (1998) Scanning electron microscopy of floral initiation in sweet cherry. J Am Soc Hortic Sci 123:509–512

    Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J Cell Mol Biol 42:49–68

    Article  CAS  Google Scholar 

  • Ho WW, Weigel D (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26:552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, DePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA 108:10756–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    Article  CAS  PubMed  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol 51:561–575

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Gu M, Shi N, Zhang H, Yang X, Osman T, Liu Y, Wang H, Vatish M, Jackson S, Hong Y (2011) Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Sci Rep 1:73

    PubMed  PubMed Central  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol CB 17:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Meilan R (1997) Floral induction in woody angiosperms. New For 14:179–202

    Article  Google Scholar 

  • Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimida N, Ureshino A, Tanaka N, Shigeta N, Sato N, Moriya-Tanaka Y, Iwanami H, Honda C, Suzuki A, Komori S, Wada M (2011) Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization. Plant Cell Rep 30:1485–1492

    Article  CAS  PubMed  Google Scholar 

  • Mimida N, Komori S, Suzuki A, Wada M (2013) Functions of the apple TFL1/FT orthologs in phase transition. Sci Hortic 156:106–112

    Article  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Fambuena N, Mesejo C, Gonzalez-Mas MC, Primo-Millo E, Agusti M, Iglesias DJ (2012) Fruit load modulates flowering-related gene expression in buds of alternate-bearing ‘Moncada’ mandarin. Ann Bot 110:1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119–122

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Bergelson J (1999) The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana (Brassicaceae) ecotypes. Am J Bot 86(4):470–475

    Article  CAS  PubMed  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755

    Article  CAS  PubMed  Google Scholar 

  • Proost S, Van Bel M, Vaneecchoutte D, Van de Peer Y, Inze D, Mueller-Roeber B, Vandepoele K (2014) PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res D43:D974–D981

    Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ríos G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:247

    PubMed  PubMed Central  Google Scholar 

  • Robson F, Costa MM, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J Cell Mol Biol 28:619–631

    Article  CAS  Google Scholar 

  • Rothkegel K, Sanchez E, Bravo S, Prieto H, Almeida AM (2016) Small RNA sequencing and DNA methylation analysis in floral bud reveal that RNA-directed DNA methylation (RdDM) participates during cold accumulation and dormancy release in sweet cherry (Prunus avium L.). RGC 8th International Rosaceae Genomics Conference abstract book, S506

  • Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, Lifschitz E (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA 106:8392–8397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindo C, Lister C, Crevillen P, Nordborg M, Dean C (2006) Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev 20:3079–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE 7:e40715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada S, Goto K (2003) Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Ureshino A, Shigeta N, Mimida N, Komori S, Takahashi S, Tanaka-Moriya Y, Wada M (2014) Overexpression of Arabidopsis FT gene in apple leads to perpetual flowering. Plant Biotechnol 31:11–20

    Article  Google Scholar 

  • Trankner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Article  PubMed  Google Scholar 

  • Wang J, Zhang X, Yan G, Zhou Y, Zhang K (2013) Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana. J Plant Physiol 170:315–320

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139:770–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J Cell Mol Biol 63:241–253

    Article  CAS  Google Scholar 

  • Ziv D, Zviran T, Zezak O, Samach A, Irihimovitch V (2014) Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing ‘Hass’ avocado trees suggests a role for PaFT in avocado flower induction. PLoS ONE 9:e110613

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank INIA Rayentué for giving us access to their fields for the experiments. We also thank Diego Andrade for helping with chlorophyll measurements, Dr. Henry Temple and Dr Ricardo Nilo for helping with PEBP gene family phylogenic analysis, and Karin Rothkegel for the fruitful discussions. This work was funded by Fondo de Fomento al Desarrollo Científico y Tecnológico FONDEF G09I1008, Corporación de Fomento de la Producción CORFO 13CTI21520-SP05 and 13CTI21520-SP06, Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT 1120766.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Miyasaka Almeida.

Additional information

Communicated by Richard G. H. Immink.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Genotyping of transgenic lines 35S:PavFT-GFP. 16 transgenic lines were generated in Arabidopsis Edi-0 background. Positive lines were confirmed by PCR, amplifying part of the sequence PavFT-GFP (approx. 600 bp). The FDH (AJ010713) gene was used as a control. (TIFF 114762 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarur, A., Soto, E., León, G. et al. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession. Plant Reprod 29, 311–322 (2016). https://doi.org/10.1007/s00497-016-0296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-016-0296-4

Keywords

Navigation