Skip to main content
Log in

Post-pollination prefertilization drops affect germination rates of heterospecific pollen in larch and Douglas-fir

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Pollen of larch (Larix × marschlinsii) and Douglas-fir (Pseudotsuga menziesii) was used in homospecific and heterospecific crosses. Germination of heterospecific pollen in ovulo was reduced in post-pollination prefertilization drops. This provides evidence of selection against foreign pollen by open-pollinated exposed ovules in these two sister taxa, which share the same type of pollination mechanism. Of the other prezygotic stages in pollen–ovule interactions, uptake of pollen by stigmatic hairs did not show any selection. Pollen tube penetration of the nucellus was similar for hetero- and homospecific pollen tubes, but heterospecific tubes only delivered gametes in one cross. To test for differences in the post-pollination prefertilization drops of each species, drops were gathered and analysed. Glucose and fructose were present in similar amounts in Douglas-fir and larch, while sucrose was found in larch only. Other carbohydrates such as xylose and melezitose were species-specific. In P. menziesii, sucrose is absent due to its conversion to glucose and fructose by apoplastic invertases. In contrast, Larix × marschlinsii drops have sucrose because they lack apoplastic invertases. The presence of invertase activity shows that the composition of gymnosperm post-pollination prefertilization drops is not static but dynamic. Drops of these two species also differed in their calcium concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–2
Figs. 3–4
Figs. 5–8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barner H, Christiansen H (1960) The formation of pollen, the pollination mechanism, and the determination of the most favourable time for controlled pollinations in Larix. Silvae Genet 9:1–11

    Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Article  CAS  Google Scholar 

  • Doyle J, O’Leary M (1935) Pollination in Pinus. Sci Proc Roy Dubl Soc Ser A 21:181–190

    Google Scholar 

  • Dumont-Béboux N, Anholt B, von Aderkas P (1999) In vitro Douglas-fir pollen germination: influence of hydration, sucrose and polyethylene glycol. Ann For Sci 56:11–18

    Article  Google Scholar 

  • Dumont-Béboux N, Anholt B, von Aderkas P (2000) In vitro germination of western larch pollen. Can J For Res 30:329–332

    Article  Google Scholar 

  • Fernando DD, Owens JN, von Aderkas P, Takaso T (1997) In vitro pollen tube growth and penetration of female gametophyte in Douglas fir (Pseudotsuga menziesii). Sex Plant Reprod 10:209–216

    Article  Google Scholar 

  • Fernando DD, Owens JN, von Aderkas P (1998) In vitro fertilization from co-cultured pollen tubes and female gametophytes of Douglas fir (Pseudotsuga menziesii). Theor Appl Gen 96:1057–1063

    Article  Google Scholar 

  • Gelbart G, von Aderkas P (2002) Ovular secretions as part of pollination mechanisms in conifers. Ann For Sci 59:345–357

    Article  Google Scholar 

  • Gong M, Yang ZH, Tsao TH (1993) Isolation and characterization of calmodulin and a novel calcium-binding protein calpollenin from Pinus yunnanensis pollen. Plant Sci 89:5–12

    Article  CAS  Google Scholar 

  • Gros-Louis M-C, Bousquet J, Pâques LE, Isabel N (2005) Species-diagnostic markers in Larix spp. based on RAPDs and nuclear, cpDNA, and mtDNA gene sequences, and their phylogenetic implications. Tree Genet Genomes 1:50–63

    Article  Google Scholar 

  • Gutmann M (1995) Improved staining procedures for photographic documentation of phenolic deposits in semi-thin sections of plant tissue. J Microsc 179:277–281

    Article  CAS  Google Scholar 

  • Hagman M (1975) Incompatibility in forest trees. Proc Roy Soc Lond Ser B 188:313–326

    Article  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–199

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen tube growth. Rev Cytol 107:1–78

    Article  Google Scholar 

  • Iraqi D, Le VQ, Lamhemedi MS, Tremblay FM (2005) Sucrose utilization during somatic embryo development in black spruce: involvement of apoplastic invertase in the tissue and of extracellular invertase in the medium. J Plant Physiol 162:115–124

    Article  PubMed  CAS  Google Scholar 

  • Leslie AB (2010) Flotation preferentially selects saccate pollen during conifer pollination. New Phytol 188:273–279

    Article  PubMed  Google Scholar 

  • McWilliam JR (1959) The role of the micropyle in the pollination of Pinus. Bot Gaz 120:109–117

    Article  Google Scholar 

  • Mikkola L (1969) Observations on interspecific sterility in Picea. Ann Bot Fenn 6:285–339

    Google Scholar 

  • Mugnaini S, Nepi M, Guarnirei M, Piotto B, Pacini E (2007) Pollination drop in Juniperus communis: response to deposited material. Ann Bot 100:1475–1481

    Article  PubMed  Google Scholar 

  • Nepi M, Pacini E, Nencini C, Collavoli E, Franchi GG (2003) Variability of nectar production and composition in Linaria vulgaris (L.) Mill. (Scrophulariaceae). Plant Syst Evol 238:109–118

    Google Scholar 

  • O’Leary SJB, Poulis BAD, von Aderkas P (2007) Identification of two thaumatin-like proteins (TLPs) in the pollination drop of hybrid yew that may play a role in pathogen defence during pollen collection. Tree Physiol 27:1649–1659

    Article  PubMed  Google Scholar 

  • Otte D, Endler JA (1989) Speciation and its consequences. Sinauer Associates, Sunderland

    Google Scholar 

  • Owens JN, Simpson SJ, Molder M (1981) The pollination mechanism and the optimal time of pollination in Douglas-fir (Pseudotsuga menziesii). Can J For Res 11:36–50

    Article  Google Scholar 

  • Owens JN, Morris SJ, Misra S (1993) The ultrastructural, histochemical, and biochemical development of the postfertilization megagametophyte and the zygotic embryo of Pseudotsuga menziesii. Can J For Res 23:816–827

    Article  CAS  Google Scholar 

  • Owens JN, Morris SJ, Catalano GL (1994) How the pollination mechanism and prezygotic and postzygotic events affect seed production in Larix occidentalis. Can J For Res 24:917–927

    Article  Google Scholar 

  • Owens JN, Takaso T, Runions CJ (1998) Pollination in conifers. Trends Plant Sci 3:479–485

    Article  Google Scholar 

  • Poulis BAD, O’Leary SJB, Haddow JD, von Aderkas P (2005) Identification of proteins present in the Douglas fir ovular secretion: an insight into conifer pollen selection and development. Int J Plant Sci 166:733–739

    Article  CAS  Google Scholar 

  • Rai HS, Reeves PA, Peakall R, Olmstead RG, Graham SW (2008) Inference of higher-order conifer relationships from a multi-locus plastid data set. Botany 86:658–669

    Article  CAS  Google Scholar 

  • Rise M (2001) The role of prezygotic events in the reproductive success of conifers. Ph.D. thesis, University of Victoria, Victoria, Canada, p 151

  • Ruhlmann JM, Kram BW, Carter CJ (2010) CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis. J Exp Bot 61:395–404

    Article  PubMed  CAS  Google Scholar 

  • Said C, Villar M, Zandonella P (1991) Ovule receptivity and pollen viability in Japanese larch (Larix leptolepis Gord.). Silvae Genet 40:1–6

    Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science Publishers, Enfield

    Google Scholar 

  • Steer MW, Steer JM (1989) Tansley review no. 16: Pollen-tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  • Takaso T, Owens JN (1994) Effects of ovular secretions on pollen in Pseudotsuga menziesii (Pinaceae). Am J Bot 81:504–513

    Article  Google Scholar 

  • Takaso T, Owens JN (1996) Postpollination-prezygotic ovular secretions into the micropylar canal in Pseudotsuga menziesii. J Plant Res 109:147–160

    Article  Google Scholar 

  • Takaso T, Owens JN (1997) Pollen movement in the micropyles canal of Larix and its simulation. J Plant Res 110:259–264

    Article  Google Scholar 

  • Takaso T, von Aderkas P, Owens JN (1996) Prefertilization events in ovules of Pseudotsuga: ovular secretion and its influence on pollen tubes. Can J Bot 74:1214–1219

    Article  Google Scholar 

  • Tomlinson PB, Braggins JE, Rattenbury JA (1991) Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproduction mechanism. Am J Bot 78:1289–1303

    Article  Google Scholar 

  • Tomlinson PB, Braggins JE, Rattenbury JA (1997) Contrasted pollen capture mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales). Am J Bot 84:214–223

    Article  PubMed  CAS  Google Scholar 

  • von Aderkas P, Leary C (1999a) Micropylar exudates in Douglas fir—timing and volume of production. Sex Plant Reprod 11:354–536

    Article  Google Scholar 

  • von Aderkas P, Leary C (1999b) Ovular secretions in the micropylar canal of larches (Larix kaempferi, L. × eurolepis). Can J Bot 77:531–536

    Google Scholar 

  • Wagner R, Mugnaini S, Sniezko R, Hardie D, Poulis BAD, Nepi M, Pacini E, von Aderkas P (2007) Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sex Plant Reprod 20:181–189

    Article  CAS  Google Scholar 

  • Wang X-Q, Tank DC, Sang T (2000) Phylogeny and divergence times in Pinaceae: evidence from three genomes. Mol Biol Evol 17:773–781

    Article  PubMed  CAS  Google Scholar 

  • Wei XX, Yang ZY, Li Y, Wang XQ (2010) Molecular phylogeny and biogeography of Pseudotsuga (Pinaceae): insights into the floristic relationship between Taiwan and its adjacent areas. Mol Phylo Evol 55:776–785

    Article  CAS  Google Scholar 

  • Willson MF, Burley N (1983) Mate choice in plants: tactics, mechanisms, and consequences. Princeton University Press, Princeton

    Google Scholar 

  • Yokota E, Ohmori T, Muto S, Shimmen T (2004) 21 kDa polypeptide, a low-molecular-weight cyclophilin, is released from pollen of higher plants into the extracellular medium in vitro. Planta 218:1008–1018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Julia Gill, Jennifer Robb and Chani Joseph for their assistance with pollination drop collection. P von Aderkas and K. Gill acknowledge the kind assistance of Prof T. Fyles, Dept Chemistry, University of Victoria and advice from Dr. J. Russell, BC Ministry of Forests. This research was funded by PAR (University of Siena) and Natural Sciences and Engineering Research Council of Canada grants held by P. v. Aderkas, A. Coulter, M. Rise, S. Rzemieniak and P. Lan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick von Aderkas.

Additional information

Communicated by William Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Aderkas, P., Nepi, M., Rise, M. et al. Post-pollination prefertilization drops affect germination rates of heterospecific pollen in larch and Douglas-fir. Sex Plant Reprod 25, 215–225 (2012). https://doi.org/10.1007/s00497-012-0193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-012-0193-4

Keywords

Navigation