Skip to main content
Log in

How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Expansive growth in plant cells is a formidable problem for biophysical studies, and the mechanical principles governing the generation of complex cellular geometries are still poorly understood. Pollen, the male gametophyte stage of the flowering plants, is an excellent model system for the investigation of the mechanics of complex growth processes. The initiation of pollen tube growth requires first of all, the spatially confined formation of a protuberance. This process must be controlled by the mechanical properties of the cell wall, since turgor is a non-vectorial force. In the elongating tube, cell wall expansion is confined to the apex of the cell, requiring the tubular region to be stabilized against turgor-induced tensile stress. Tip focused surface expansion must be coordinated with the supply of cell wall material to this region requiring the precise, logistical control of intracellular transport processes. The advantage of such a demanding mechanism is the high efficiency it confers on the pollen tube in leading an invasive way of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JR, Barnes WS, Bedinger P (2002) 2, 6-Dichlorbenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. J Plant Physiol 159:61–67

    Article  CAS  Google Scholar 

  • Aouar L, Chebli Y, Geitmann A (2009) Morphogenesis of complex plant cell shapes—the mechanical role of crystalline cellulose in growing pollen tubes. Sex Plant Reprod (in press)

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua NH, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependant tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Baskin T (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  PubMed  CAS  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8

    Article  Google Scholar 

  • Bibikova TN, Jacob T, Dahse I, Gilroy S (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125:2925–2934

    PubMed  CAS  Google Scholar 

  • Bolick MR (1981) Mechanics as an aid to interpreting pollen structure and function. Rev Paleobot Palynol 35:61–80

    Article  Google Scholar 

  • Bolick MR, Vogel S (1992) Breaking strengths of pollen grain walls. Plant Syst Evol 181:171–178

    Article  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy (STICS). Plant Physiol 147:1646–1658

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Castells T, Seoane-Camba JA, Suàrez-Cervera M (2003) Intine wall modifications during germination of Zygophyllum fabago (Zygophyllaceae) pollen grains. Can J Bot 81:1267–1277

    Article  Google Scholar 

  • Castle E (1958) The topography of tip growth in a plant cell. J Gen Physiol 41:913–926

    Article  PubMed  CAS  Google Scholar 

  • Chebli Y, Bou Daher F, Sanyal M, Aouar L, Geitmann A (2008) Microwave assisted processing of plant cells for optical and electron microscopy. Bull Micr Soc Can 36:15–19

    Google Scholar 

  • Cho H-T, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  PubMed  CAS  Google Scholar 

  • Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977) Germination and early tube development in vitro of Lycopersicum peruvianum pollen: ultrastructural features. Planta 136:239–247

    Article  Google Scholar 

  • Cresti M, Ciampolini F, Mulcahy DLM, Mulcahy G (1985) Ultrastructure of Nicotiana alata pollen, its germination and early tube formation. Amer J Bot 72:719–727

    Article  Google Scholar 

  • Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6:207–230

    PubMed  CAS  Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl IK, DeWin AHN, Pierson ES, Rongen G (1995) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188:267–276

    Article  Google Scholar 

  • Derksen J, Li Y-Q, Knuiman B, Geurts H (1999) The wall of Pinus sylvestris L. pollen tubes. Protoplasma 208:26–36

    Article  CAS  Google Scholar 

  • Dumais J, Long SR, Shaw SL (2004) The mechanics of surface expansion anisotropy in Medicago truncatula root hairs. Plant Physiol 136:3266–3275

    Article  PubMed  CAS  Google Scholar 

  • Dumais J, Shaw SL, Steele CR, Long SR, Ray PM (2006) An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Dev Biol 50:209–222

    Article  PubMed  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl):S84–S97

    Article  PubMed  CAS  Google Scholar 

  • Edlund AF, Zheng Q, Lyles R, Mosley R, Sibener SJ, Preuss D (2009) Breaching the exine wall: pollen tube germination in Arabidopsis thaliana (Brassicaceae). Ann Bot (in press)

  • Geitmann A, Dumais J (2009) Not-so-tip-growth. Plant Signal Behav 4:136–138

    Article  PubMed  Google Scholar 

  • Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Parre E (2004) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex Plant Reprod 17:9–16

    Article  Google Scholar 

  • Geitmann A, Steer MW (2006) The architecture and properties of the pollen tube cell wall. In: Malhó R (ed) The pollen tube: a cellular and molecular perspective, plant cell Monographs, vol 3. Springer, Berlin, pp 177–200

    Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth—coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    Article  PubMed  CAS  Google Scholar 

  • Harold FM (2002) Force and compliance: rethinking morphogenesis in walled cells. Fungal Genet Biol 37:271–282

    Article  PubMed  CAS  Google Scholar 

  • Heath IB (1987) Preservation of a labile cortical array of actin filaments in growing hyphal tips of the fungus Saprolegnia ferax. Eur J Cell Biol 44:10–16

    Google Scholar 

  • Heslop-Harrison J (1975) The adaptive significance of the exine. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 27–38

    Google Scholar 

  • Heslop-Harrison J (1979a) Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann Bot 44(Suppl):1–47

    Google Scholar 

  • Heslop-Harrison J (1979b) An interpretation of the hydrodynamics of pollen. Am J Bot 50:831–842

    Google Scholar 

  • Heslop-Harrison J (1979c) Pollen walls as adaptive systems. Ann Mo Bot Gard 66:813–829

    Article  Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107:1–78

    Article  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J (1992) Germination of monocolpate angiosperm pollen: evolution of actin cytoskeleton and wall during hydration, activation and tube emergence. Ann Bot 69:385–394

    Google Scholar 

  • Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26

    Article  Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, McCully ME (1975) The use of an optical brightener in the study of plant structure. Stain Technol 50:319–329

    PubMed  CAS  Google Scholar 

  • Knox RB, Heslop-Harrison J (1970) Pollen-wall proteins: localization and enzymic activity. J Cell Sci 6:1–27

    PubMed  CAS  Google Scholar 

  • Koehl MAR, Quillin KJ, Pell A (2000) Mechanical design of fiber-wound hydraulic skeletons: the stiffening and straightening of embryonic notochords. Am Zool 40:28–41

    Article  Google Scholar 

  • Kroeger JH, Bou Daher F, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97:1822–1831

    Article  PubMed  CAS  Google Scholar 

  • Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207

    Article  PubMed  CAS  Google Scholar 

  • Lenartowska M, Michalska A (2008) Actin filament organization and polarity in pollen tubes revealed by myosin II subfragment 1 decoration. Planta 228:891–896

    Article  PubMed  CAS  Google Scholar 

  • Li Y-Q, Zhang HQ, Pierson ES, Huang FY, Linskens HF, Hepler PK, Cresti M (1996) Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes. Planta 200:41–49

    Article  CAS  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  PubMed  CAS  Google Scholar 

  • Márquez J, Seoane-Camba JA, Suárez-Cervera M (1997) Allergenic and antigenic proteins released in the apertural sporoderm during the activation process in grass pollen grains. Sex Plant Reprod 10:269–278

    Article  Google Scholar 

  • Money NP (1997) Wishful thinking of turgor revisited: the mechanics of fungal growth. Fungal Genet Biol 21:173–187

    Article  Google Scholar 

  • Money NP, Harold FM (1992) Extension growth of the water mold Achlya: interplay of turgor and wall strength. Cell Biol 89:4245–4249

    CAS  Google Scholar 

  • Money NP, Harold FM (1993) Two water molds can grow without measurable turgor pressure. Planta 190:426–430

    Article  Google Scholar 

  • Muller J (1979) Form and function in angiosperm pollen. Ann Mo Bot Gard 66:593–632

    Article  Google Scholar 

  • Nepi M, Pacini E (1999) What could be the significance of polysiphony in Lavatera arborea? In: Clément C, Pacini E, Audran J-C (eds) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp 13–20

    Google Scholar 

  • Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Pacini E (1990) Harmomegathic characters of Pteridophyta spores and Spermatophyta pollen. Plant Syst Evol Suppl 5:53–69

    Google Scholar 

  • Parre E, Geitmann A (2005a) More than a leak sealant—the physical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Article  PubMed  CAS  Google Scholar 

  • Parre E, Geitmann A (2005b) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  PubMed  CAS  Google Scholar 

  • Payne WW (1972) Observations of harmomegathy in pollen of Anthophyta. Grana 12:93–98

    Article  Google Scholar 

  • Payne WW (1981) Structure and function in angiosperm pollen wall evolution. Rev Palaebot Palynol 35:39–60

    Article  Google Scholar 

  • Pickett-Heaps JD, Klein AG (1998) Tip growth in plant cells may be amoeboid and not generated by turgor pressure. Proc R Soc London 265:1453–1459

    Article  Google Scholar 

  • Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, an gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Proseus T, Boyer J (2006) Calcium pectate chemistry controls growth rate of Chara corallina. J Exp Bot 57:3989–4002

    Article  PubMed  CAS  Google Scholar 

  • Proseus T, Boyer J (2007) Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot 58:4283–4292

    Article  PubMed  CAS  Google Scholar 

  • Rae AL, Harris PJ, Bacic A, Clarke AE (1985) Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes. Planta 166:128–133

    Article  CAS  Google Scholar 

  • Röckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    Article  PubMed  CAS  Google Scholar 

  • Rowley JR, Skvarla JJ (2000) The elasticity of the exine. Grana 39:1–7

    Article  Google Scholar 

  • Russell SD, Bhalla PL, Singh MB (2008) Transcriptome-based examination of putative pollen allergens of rice (Oryza sativa ssp. japonica). Mol Plant 1:751–759

    Article  PubMed  CAS  Google Scholar 

  • Sassen MMA (1964) Fine structure of Petunia pollen grain and pollen tube. Acta Bot Neerl 13:175–181

    Google Scholar 

  • Scotland RW, Barnes SH, Blackmore S (1990) Harmomegathy in the Acanthaceae. Grana 29:37–45

    Article  Google Scholar 

  • Sheoran IS, Pedersen EJ, Ross ARS, Sawhney VK (2009) Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta 230:779–793

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Cervera M, Arcalis E, Le Thomas A, Seoane-Camba J (2002) Pectin distribution pattern in the apertural intine of Euphorbia peplus L. (Euphorbiaceae) pollen. Sex Plant Reprod 14:291–298

    Article  Google Scholar 

  • Suen DF, Huang AH (2007) Maize pollen coat xylanase facilitates pollen tube penetration into silk. J Biol Chem 282:625–636

    Article  PubMed  CAS  Google Scholar 

  • Tian G-H, Chen M-H, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SC, Polito VS (1988) Spatial and temporal organisation of actin during hydration, activation and germination of pollen in Pyrus communis L.: a population study. Protoplasma 147:5–15

    Article  Google Scholar 

  • Valdivia ER, Stephenson AG, Durachko DM, Cosgrove D (2009) Class B b-expansins are needed for pollen separation and stigma penetration. Sex Plant Reprod 22:141–152

    Article  PubMed  Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545

    PubMed  CAS  Google Scholar 

  • Vissenberg K, Fry SC, Verbelen JP (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Wodehouse RP (1935) Pollen grains. McGraw-Hill, New York

    Google Scholar 

  • Zerzour R, Kroeger JH, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Geitmann lab is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Human Frontier Science Program (HFSP). Thanks to Youssef Chebli and Louise Pelletier for preparing the scanning electron micrographs. I am grateful to Phil Lintilhac for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geitmann, A. How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry. Sex Plant Reprod 23, 63–71 (2010). https://doi.org/10.1007/s00497-009-0121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-009-0121-4

Keywords

Navigation