Skip to main content
Log in

pgd1, an Arabidopsis thaliana deletion mutant, is defective in pollen germination

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Alexander MP (1969) Differential staining of aborted and non-aborted pollen. Stain Technol 44:117–122

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al (1996) Current protocols in molecular biology, vol 3. Wiley, New York

    Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme S, Horlow C, Vezon D, de Laissardiere S, Guyon A, et al (1998) T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol Gen Genet 260:444–452

    Article  PubMed  CAS  Google Scholar 

  • Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-F, Matsubayashi Y, Sakagami Y (2000) Peptide growth factor phytosulfokine-α contributes to the pollen population effect. Planta 211:752–755

    Article  PubMed  CAS  Google Scholar 

  • Cole RA, Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018

    Article  PubMed  CAS  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl):S84–S97

    Article  PubMed  CAS  Google Scholar 

  • Fan L-M, Wang Y-F, Wang H, Wu W-H (2001) In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot 52:1603–1614

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Van Montagu M, Zambryski P (1987) Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proc Natl Acad Sci USA 84:6169–6173

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297

    Article  PubMed  CAS  Google Scholar 

  • Golovkin M, Reddy AS (2003) A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci USA 100:10558–10563

    Article  PubMed  CAS  Google Scholar 

  • Grini PE, Schnittger A, Schwarz H, Zimmermann I, Schwab B, et al (1999) Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics 15:849–863

    Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Google Scholar 

  • Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, et al (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149:621–631

    PubMed  CAS  Google Scholar 

  • Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, et al (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–982

    Article  PubMed  CAS  Google Scholar 

  • Kaya H, Sato S, Tabata S, Kobayashi Y, Iwabuchi M, et al (2000) Hosoba toge toge, a syndrome caused by a large chromosomal deletion associated with a T-DNA insertion in Arabidopsis. Plant Cell Physiol 41:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Young JC, Tax F, Sussman MR (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci USA 93:8145–8150

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, et al (2004a) Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167:1975–1986

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS, et al (2004b) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    Article  PubMed  CAS  Google Scholar 

  • Laufs P, Autran D, Traas J (1999) A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J 18:131–139

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-RJ, Assmann SM (1999) Arabidopsis thaliana ‘extra-large GTP-binding protein’ (AtXLG1): a new class of G-protein. Plant Mol Biol 40:55–64

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chory J (1998) Preparation of DNA from Arabidopsis. Methods Mol Biol 82:55–60

    PubMed  CAS  Google Scholar 

  • Liu Y-G, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, et al (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed  CAS  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16(Suppl):S142–S153

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-Like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  PubMed  CAS  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    Article  PubMed  CAS  Google Scholar 

  • Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961–964

    Article  PubMed  CAS  Google Scholar 

  • Mouline K, Very A-A, Gaymard F, Boucherez J, Pilot G, et al (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16:339–350

    Article  PubMed  CAS  Google Scholar 

  • Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650

    PubMed  CAS  Google Scholar 

  • Naito K, Kusaba M, Shikazono N, Takano T, Tanaka A, et al (2005) Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with γ-rays and carbon ions. Genetics 169:881–889

    Article  PubMed  CAS  Google Scholar 

  • Oh S-A, Park SK, Jang I, Howden R, Moore JM, et al (2003) Halfman, an Arabidopsis male gametophytic mutant associated with a 150 kb chromosomal deletion at the site of transposon insertion. Sex Plant Reprod 16:99–102

    Article  CAS  Google Scholar 

  • Page DR, Kohler C, da Costa-Nunes JA, Baroux C, Moore JM, et al (2004) Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proc Natl Acad Sci USA 101:2969–2974

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799

    PubMed  CAS  Google Scholar 

  • Pollak PE, Hansen K, Astwood JD, Taylor LP (1995) Conditional male fertility in maize. Sex Plant Reprod 8:231–241

    Article  Google Scholar 

  • Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  PubMed  CAS  Google Scholar 

  • Procissi A, de Laissardiere S, Ferault M, Vezon D, Pelletier G, et al (2001) Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana. Genetics 158:1773–1783

    PubMed  CAS  Google Scholar 

  • Randhawa HS, Dilbirligi M, Sidhu D, Erayman M, Sandhu D, et al (2004) Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics 168:677–686

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV (2001) Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 13:659–666

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2999

    Article  PubMed  CAS  Google Scholar 

  • Steinebrunner I, Wu J, Sun Y, Corbett A, Roux SJ (2003) Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant Physiol 131:1638–1647

    Article  PubMed  CAS  Google Scholar 

  • Tax FE, Vernon DM (2001) T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126:1527–1538

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Jorgensen R (1992) Conditional male fertility in chalcone synthase-deficient petunia. J Hered 83:11–17

    CAS  Google Scholar 

  • Tsugeki R, Kochieva EZ, Fedoroff NV (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J 10:479–489

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H, Yamada T, Hasegawa K, Usami N, Kojima T, et al (2001) Large-scale selection of lines with deletions in chromosome 1 B in wheat and applications for fine deletion mapping. Genome 44:501–508

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    Article  PubMed  CAS  Google Scholar 

  • Vizir IY, Mulligan BJ (1999) Genetics of gamma-irradiation-induced mutations in Arabidopsis thaliana: large chromosomal deletions can be rescued through the fertilization of diploid eggs. J Hered 90:412–417

    Article  PubMed  CAS  Google Scholar 

  • Vizir IY, Anderson ML, Wilson ZA, Mulligan BJ (1994) Isolation of deficiencies in the Arabidopsis genome by gamma-irradiation of pollen. Genetics 137:1111–1119

    PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Wilhelmi LK, Preuss D (1999) The mating game: pollination and fertilization in flowering plants. Curr Opin Plant Biol 2:18–22

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Matsubayashi Y, Nakamura K, Sakagami Y (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol 127:842–851

    Article  PubMed  CAS  Google Scholar 

  • Ylstra B, Touraev A, Benito Moreno RM, Stoger E, van Tunen AJ, et al (1992) Flavonols stimulate development germination and tube growth of tobacco pollen. Plant Physiol 100:902–907

    Article  PubMed  CAS  Google Scholar 

  • Ylstra B, Muskens M, van Tunen AJ (1996) Flavonols are not essential for fertilization in Arabidopsis thaliana. Plant Mol Biol 32:1155–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Anne Gibson for technical assistance, Drs. Dazhong Zhao for help with pollen staining, Annick Stintzi and John Browse for suggestions on in vitro pollen germination experiment, Rosemary Walsh for help with SEM, Tom Jack for providing vector pD991, Mark Johnson for discussion on mutant pollen characterization, and Hong Ma, Sheila McCormick, Zhenbiao Yang, and Andy McCubbin for discussions on the project. This research was supported by United States Department of Agriculture grants 2001-35304-09916 and 2003-35304-13924 to S. M. A. S.M.A. also gratefully acknowledges support from a National Science Foundation POWRE grant (MCB-9973546), which enabled the initiation of this research during a sabbatical in the laboratory of Dr. Michael R. Sussman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. Assmann.

Additional information

Communicated by José Feijó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, L., Fan, LM. & Assmann, S.M. pgd1, an Arabidopsis thaliana deletion mutant, is defective in pollen germination. Sex Plant Reprod 20, 137–149 (2007). https://doi.org/10.1007/s00497-007-0050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-007-0050-z

Keywords

Navigation