Skip to main content
Log in

atcog8-2, A New Mutant Allele of the Conserved Oligomeric Golgi Complex 8, Reveals the Need for the COG Complex for Gametophyte Development in Arabidopsis

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Angiosperms proliferate through double fertilization mediated by male (pollen) and female (embryo sac) gametophytes. To determine the genes essential for pollen development in Arabidopsis thaliana, we first generated a mutant population using an activation tagging vector with herbicide-resistance gene and screened mature pollen phenotypes. Then, a T-DNA insertional heterozygous line was isolated, initially named AP22-48, which produced high levels of abnormal pollen grains. Reciprocal crosses revealed that the genetic transmission of the mutant allele was completely blocked through the male and was highly limited through the female. Determination of T-DNA flanking sequences and genetic complementation of AP22-48 identified AtCOG8, a subunit of the Conserved Oligomeric Golgi (COG) complex, which is a tethering factor essential for the Golgi architecture and retrograde vesicle trafficking in eukaryotes. We renamed the mutant atcog8-2, with reference to a previous cog8 mutant (atcog8-1). While atcog8-1 induced male-specific defects during pollen tube growth, atcog8-2 mutant failed to produce normal gametophytes in both sexes. Detailed morphological analysis demonstrated aberrant development of the pollen and embryo sac in atcog8-2 mutants. This study, thus, strongly suggests that the COG complex functions are broad and indispensable for accurate gametophyte development, which is a prerequisite for sexual reproduction in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data related in the figures and tables are available within the manuscript and its supplementary information.

References

Download references

Acknowledgements

This research was supported by Kyungpook National University Research Fund, 2022. The authors thank Binbin Li, Anchilie Francis-Mangilet, and Jien Jeon for early stage work involved in mutant isolation and vector construction.

Author information

Authors and Affiliations

Authors

Contributions

SKP and SAO conceived the research; SKP supervised the experiments; TDN, SAO, MHK, SJ performed the experiments and analyzed the data; SKP, SAO, TDN wrote the manuscript with contributions from MHK and SJ.

Corresponding author

Correspondence to Soon Ki Park.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 29821 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S.A., Nguyen, T.D., Kim, MH. et al. atcog8-2, A New Mutant Allele of the Conserved Oligomeric Golgi Complex 8, Reveals the Need for the COG Complex for Gametophyte Development in Arabidopsis. J. Plant Biol. 67, 109–121 (2024). https://doi.org/10.1007/s12374-023-09414-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-023-09414-4

Keywords

Navigation