Skip to main content
Log in

Point-Curve Incidences in the Complex Plane

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We prove an incidence theorem for points and curves in the complex plane. Given a set of m points in ℝ2 and a set of n curves with k degrees of freedom, Pach and Sharir proved that the number of point-curve incidences is \(O\left( {{m^{\frac{k}{{2k - 1}}}}{n^{\frac{{2k - 2}}{{2k - 1}}}} + m + n} \right)\). We establish the slightly weaker bound \({O_\varepsilon }\left( {{m^{\frac{k}{{2k - 1}} + \varepsilon }}{n^{\frac{{2k - 2}}{{2k - 1}}}} + m + n} \right)\) on the number of incidences between m points and n (complex) algebraic curves in ℂ2 with k degrees of freedom. We combine tools from algebraic geometry and differential geometry to prove a key technical lemma that controls the number of complex curves that can be contained inside a real hypersurface. This lemma may be of independent interest to other researchers proving incidence theorems over ℂ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bochnak, M. Coste and M.-F. Roy: Real algebraic geometry, Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  2. J. Bourgain and C. Demeter: l p decouplings for hypersurfaces with nonzero Gaussian curvature, arXiv:1407.0291, 2014.

    MATH  Google Scholar 

  3. J. Bourgain and C. Demeter: New bounds for the discrete Fourier restriction to the sphere in four and five dimensions, Internat. Math. Res. Notices 3150–3184, 2015.

    Google Scholar 

  4. E. Breuillard, B. Green and T. Tao: Approximate subgroups of linear groups, Geom. Funct. Anal. 21 (2011), 774–819.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E. Welzl: Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99–160.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Cox, J. Little and D. O’Shea: Ideals, varieties, and algorithms, Springer, New York, third edition, 2007.

    Book  MATH  Google Scholar 

  7. T. W. Dubé: The structure of polynomial ideals and Gröbner bases, SIAM J. Comput. 19 (1990), 750–775.

    Article  MathSciNet  MATH  Google Scholar 

  8. Z. Dvir and S. Gopi: On the number of rich lines in truly high dimensional sets, Proc. of 31st International Symposium on Computational Geometry 584–598, 2015.

    Google Scholar 

  9. G. Elekes and E. Szabó: How to find groups?(and how to use them in Erdős geometry?), Combinatorica 32 (2012), 537–571.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Farber, S. Ray and S. Smorodinsky: On totally positive matrices and geometric incidences, J. Combin. Theory Ser. A 128 (2014), 149–161.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Gianni, B. Trager and G. Zacharias: Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput., 6(2-3):149–167, 1988, Computational aspects of commutative algebra.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Guth and N. Katz: On the Erdős distinct distance problem in the plane, Ann. of Math. 181 (2015), 155–190.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Harris: Algebraic geometry: A first course, volume 133 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  14. R. Hartshorne: Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977.

    Book  MATH  Google Scholar 

  15. W. G. Kelley and A. C. Peterson: The theory of differential equations: classical and qualitative, Springer Science & Business Media, 2010.

    Book  MATH  Google Scholar 

  16. J. Matoušek: Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2002.

    Book  Google Scholar 

  17. D. Mumford: Algebraic geometry. I, Springer-Verlag, Berlin-New York, 1981, Complex projective varieties, Corrected reprint.

    MATH  Google Scholar 

  18. J. Pach and M. Sharir: Repeated angles in the plane and related problems, J. Combin. Theory Ser. A 59 (1992), 12–22.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Pach and M. Sharir: On the number of incidences between points and curves, Combin. Probab. Comput. 7 (1998), 121–127.

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Raz, M. Sharir and F. de Zeeuw: Polynomials vanishing on cartesian products: The Elekes-Szabó theorem revisited, Proc. 31st Symp. on Comp. Geom., pages 522–536, 2015.

    Google Scholar 

  21. O. Raz, M. Sharir and J. Solymosi: Polynomials vanishing on grids: The ElekesRónyai problem revisited, Amer. J. Math. 138 (2016), 1029–1065.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Sharir and J. Zahl: Cutting algebraic curves into pseudo-segments and applications, arXiv:1604.07877, 2016.

    MATH  Google Scholar 

  23. J. Solymosi and F. de Zeeuw: Incidence bounds for complex algebraic curves on Cartesian products, New Trends in Intuitive Geometry, to appear, 2016.

    Google Scholar 

  24. J. Solymosi and T. Tao: An incidence theorem in higher dimensions, Discrete Comput. Geom. 48 (2012), 255–280.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Szemerédi and W. T. Trotter: Extremal problems in discrete geometry, Combinatorica 3 (1983), 381–392.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Tóth: The Szemerédi-Trotter theorem in the complex plane, Combinatorica 35 (2015), 95–126.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Valculescu and F. de Zeeuw: Distinct values of bilinear forms on algebraic curves, Contrib. Discret. Math. 11 (2016), 31–45.

    MathSciNet  MATH  Google Scholar 

  28. J. Zahl: A Szeméredi-Trotter type theorem in R4, Discrete Comput. Geom. 54 (2015), 513–572.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Zahl: A note on rich lines in truly high dimensional sets, Forum Math. Sigma 4 (2016), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Sheffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheffer, A., Szabó, E. & Zahl, J. Point-Curve Incidences in the Complex Plane. Combinatorica 38, 487–499 (2018). https://doi.org/10.1007/s00493-016-3441-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3441-7

Mathematics Subject Classification (2000)

Navigation