Skip to main content
Log in

Calibration, testing and application of the AquaCrop model for bean crop under irrigation regimes

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Crop growth simulation models relate the soil–water-plant-atmosphere components to estimate the development and yield of plants in different scenarios, enabling the identification of efficient irrigation strategies. The aim of this study was to calibrate crop coefficients for a common bean cultivar (IAPAR 57) and assess the AquaCrop model's efficacy in simulating crop growth under different irrigation regimes (T0 – non-irrigated, T1—fully irrigated, and T2—deficit irrigated) and sowing dates (S1—March 21, S2—April 24, and S3—August 23). Successful calibration was achieved for crop seasons with suitable temperatures to crop growth (S1 and S3). However, during periods with suboptimal temperatures (April 24 season), coupled with reduced irrigation supply (T0 and T2), the AquaCrop model did not appropriately account for the combined effects of thermal and water stresses. Despite adjustments to stress coefficients, this led to an overestimation of crop growth and yield. In long-term simulations, the model successfully replicated the variability of crop water availability over cropping seasons, reflecting the impact of precipitation variations. It recommended irrigation strategies for the study region (irrigate at depletion of 120 and 170% of readily available water for sowing on March 21 and August 24, respectively) to achieve high crop yield (> 2,769 kg ha−1) and water productivity (1,050 to 1,445 kg m−3) with minimal application depths (< 150 mm). While acknowledging the need for improvements in thermal stress calculations, the AquaCrop model demonstrates promising utility in studies and applications where water availability significantly influences crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Available if requested.

Code availability

Not applicable.

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109

  • Alvares CA, Stape JL, Sentelhas PC, Moraes G, Leonardo J, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Chibarabada TP, Modi AT, Mabhaudhi T (2018) Calibration and testing of AquaCrop for groundnut (Arachis hypogaea) and dry bean (Phaseolus vulgaris). Water use and nutritional water productivity of selected major and underutilised grain legumes, p. 138, 2018

  • Chibarabada TP, Modi AT, Mabhaudhi T (2020) Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions. Agric for Meteorol 281:107850

    Article  Google Scholar 

  • Coêlho JD (2018) Produção e Grãos – Feijão, Milho e Soja. 340p.

  • Conceição CGD (2021) Estimativa da produção da cultura do milho irrigado através de simulação com o modelo AquaCrop e determinação da lâmina ótima econômica. 2021. Doctoral dissertation. Universidade Federal de Santa Maria. 75p

  • Costa MS, Mantovani EC, Jesus FLF, Sanches AC, Silva JLB, Oliveira Santos J (2021) Uso do software AquaCrop para simular a resposta do feijão à diferentes regimes de irrigação. Irriga 1(3):557–572

    Article  Google Scholar 

  • Coorevits L (2010) Calibration and validation of green beans for the AquaCrop model. Dissertação (Mestrado em Engenharia de Recursos Hídricos) –Universidade Federal de Campina Grande, Campina Grande

  • Doorenbos J, Kassam AH (1979) FAO irrigation and drainage paper No. 33 “Yield response to water”. FAO–Food and Agriculture Organization of the United Nations, Rome

  • Espadafor M, Couto L, Resende M, Henderson DW, Garcia-Villa M, Fereres E (2017) Simulation of the responses of dry beans (Phaseolus vulgaris L.) to irrigation. Trans ASABE 60(6):1983–1994

  • Faria RT, Folegatti MV, Frizzone JA, Saad AM (1997) Determination of a long-term optimal irrigation strategy for dry beans in Parana State, Brazil. Sci Agric 54:155–164

    Article  Google Scholar 

  • Heinemann AB, Stone LF, Silva SC (2009) Cultivos Temporários: Feijão. In: Monteiro JEBA (Organizador). Agrometeorologia dos Cultivos: o fator meteorológico na produção agrícola. Brasília – DF: INMET. p. 183–203

  • Hoffmann Júnior L, Ribeiro ND, Rosa SSD, Jost E, Poersch NL, Medeiros SLP (2007) Resposta de cultivares de feijão à alta temperatura do ar no período reprodutivo. Cienc Rur 37:1543–1548

    Article  Google Scholar 

  • Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E (2009) AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J 101:448–459

    Article  Google Scholar 

  • Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Godfray HCJ, Herrero M, Howitt RE, Janssen S, Keating BA, Munoz-Carpena R, Porter CH, Rosenzweig C, Wheeler TR (2017) Brief history of agricultural systems modeling. Agric Sys 155:240–254

    Article  Google Scholar 

  • Kanda EK, Senzanje A, Mabhaudhi T (2021) Calibration and validation of the AquaCrop model for full and deficit irrigated cowpea (Vigna unguiculata (L.) Walp). Phys Chem Earth 124:102941

  • Kim D, Kaluarachchi J (2015) Validating FAO AquaCrop using Landsat images and regional Crop information. Agric Water Manag 149:143–155

    Article  Google Scholar 

  • Magalhães ID, Lyra GB, Souza JL, Teodoro I, Rocha AEQ, Cavalcante Júnior CA, Lyra GB, Ferreira Júnior RA, Carvalho AL, de Ferraz RLA (2018) Performance of the AquaCrop model for bean ('Phaseolus vulgaris' L.) under irrigation condition. Aust J Crop Sci 13(7):1188–1196

  • Mabhaudhi T, Modi AT, Beletse YG (2014) Parameterisation and testing of AquaCrop for a South African bambara groundnut landrace. Agron J 106:243–251

    Article  Google Scholar 

  • Mkhabela MS, Bullock PR (2012) Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agric Water Manag 110:16–24

    Article  Google Scholar 

  • Montoya F, Camargo D, Ortega JF, Córcoles JI, Domínguez A (2016) Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agric Water Manag 164:267–280

    Article  Google Scholar 

  • Nunes HGGC, Farias VDS, Sousa DP, Costa DLP, Pinto JVN, Moura VB, Teixeira EO, Lima MJA, Ortega-Farias S, Souza PJOP (2021) Parameterization of the AquaCrop model for cowpea and assessing the impact of sowing dates normally used on yield. Agric Water Manag 252:106880

    Article  Google Scholar 

  • Oliveira NT, Gómez Masjuan Y, Boicet Fabré T, Brown Manrique O (2021) Evaluación del modelo AquaCrop en condiciones de riego óptimo y deficitario en Phaseolus vulgaris. Centro Agric 48(2):37–46

    Google Scholar 

  • Oliveira LFC, Oliveira MDC, Wendland A, Heinemann A, Guimarães C, Ferreira EDB, Silveira PM (2018) Conhecendo a fenologia do feijoeiro e seus aspectos fitotécnicos. Santo Antônio de Goiás, GO: Embrapa Arroz e Feijão

  • Oteki DR (2015) Evaluation of Deficit Irrigation on Water Productivity and Yield Response of Beans Using AquaCrop in Eldoret, Kenya. Doctoral dissertation. Moi University

  • Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of Drought and/or Heat Stress on 689 Physiological, Developmental, Growth, and Yield Processes of Crop Plants, in: Ahuja LR, Reddy VR, Saseendran SA, Yu Q.(Eds.). Advances in Agricultural Systems Modeling

  • Raes D, Steduto P, Hsiao TC, Fereres E (2009) Crop water productivity. Calculation procedures and calibration guidance. AquaCrop version 3.0. FAO. Land and Water Development Division, Rome

  • Raes D, Steduto P, Hsiao TC, Fereres E (2012) Reference Manual AquaCrop (Version 4.0)

  • Raes D, Steduto P, Hsiao CT, Fereres E (2018) Reference Manual, Chapter 1 – AquaCrop, Version 6.0 – 6.1. Food and Agriculture Organization of the United Nations. Roma. 2018

  • Ran H, Kang S, Li F, Tong L, Ding R, Du T, Li S, Zhang X (2017) Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China. Agric Sys 151:20–32

    Article  Google Scholar 

  • Ran H, Kang S, Li F, Du T, Tong L, Li S, Ding R, Zhang X (2018) Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agric Water Manag 203:438–450

    Article  Google Scholar 

  • Silva ACSL (2019) Consumo hídrico e calibração/validação do modelo AquaCrop para a cultura do feijão caupi cultivado no semiárido do nordeste do Brasil. Tese de doutorado

  • Steduto P, Hsiao TC, Fereres E (2007) On the conservative behavior of biomass water productivity. Irrigation Sci 25(3):189–207

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop-The FAO crop model to simulate yield response to water: I Concepts and Underlying Principles. Agron J 101:426–437

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Fereres E, Raes D (2012) Crop yield response to water. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Vanuytrecht E, Raes D, Steduto P, Hsiao TC, Fereres E, Heng LK, Vila MG, Moreno PM (2014) AquaCrop: FAO’s crop water productivity and yield response model. Environ Model Softw 62:351–360

    Article  Google Scholar 

  • Vieira C, Júnior TJP, Borém A (2006) Feijão. Cap.4 – Exigências Edafoclimáticas. 2 ed. Viçosa: UFV -Universidade Federal de Viçosa. 600p

  • Zeleke KT, Luchett D, Cowley R (2011) Calibration and testing of the FAO AquaCrop model for canola. Agron J 103(6):1610–1618

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.N.F.C. and R.T.F..; Methodology, W.N.F.C. and R.T.F.; Formal analysis, W.N.F.C., R.T.F. and A.P.C.; Investigation, W.N.F.C., R.T.F. and A.P.C.; Data curation, W.N.F.C., L.F.P. and A.B.D.; Writing – Original draft preparation, W.N.F.C., R.T.F. and A.P.C.; Writing – review & editing, L.F.P., A.B.D. and E.P.F.; Supervision, R.T.F.

Corresponding author

Correspondence to Anderson Prates Coelho.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Conceição, W.N.F., de Faria, R.T., Coelho, A.P. et al. Calibration, testing and application of the AquaCrop model for bean crop under irrigation regimes. Int J Biometeorol (2024). https://doi.org/10.1007/s00484-024-02699-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00484-024-02699-1

Keywords

Navigation