Skip to main content

Advertisement

Log in

Phenology of Araucaria Forest fern communities: comparison of the influence of natural edge, artificial edge, and forest interior

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The edge effect, triggered by habitat fragmentation, alters forest microclimates and influences the life cycle of plants. Phenology may indicate the first changes in phenological patterns in response to the effects of climate change. Climate regulates the phenology of ferns and climatic triggers influence plants in tropical and subtropical regions differently. This study analyzed and compared the phenology of fern communities of three sub-areas — natural edge, artificial edge, and forest interior — of a fragment of Araucaria Forest in the Floresta Nacional de São Francisco de Paula, Rio Grande do Sul, Brazil, and its relationship with meteorological, astronomical, and edaphic variables. Abiotic and edaphic data were monitored concomitantly with phenological data (leaf renewal and senescence and sporangia formation) in each sub-area over a biennium. Temperature, air humidity, and soil moisture, which undergo changes with the edge effect, influenced edge plants. Leaf renewal was the main phenophase showing strong indication of changes in vegetative patterns in natural and artificial edge communities. Among the communities, that of the artificial edge signaled phenological changes that could compromise the development of ferns if effects intensify over time. In this respect, the phenology of artificial edge ferns differed from that of plants growing in originally natural formations (natural edge and forest interior), showing that exogenous transformations represent a new environmental situation for ferns to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Müller et al. (2021)

Fig. 2

Source: Davis Vantage Pro2 Weather Station

Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

The authors declare no competing interests.

References

  • Alberti LF, Morellato, LPC (2008) Influência da abertura de trilhas antrópicas e clareiras naturais na fenologia reprodutiva de Gymnanthes concolor (Spreng.) Müll. Arg. (Euphorbiaceae). Braz J. Bot https://doi.org/10.1590/S0100-84042008000100006

  • Barrington DS (1993) Ecological and historical factors in fern biogeography. J Biogeogr. https://doi.org/10.2307/2845635

    Article  Google Scholar 

  • Barros ICL, Santiago ACP, Pereira AFN, Pietrobom MR (2006) Pteridófitas. In: Pôrto KC, Almeida-Cortez JS, Tabarelli M. Diversidade Biológica e Conservação da Floresta Atlântica a Norte do Rio São Francisco. Brasília: Ministério do Meio Ambiente, pp 148–171.

  • Bergamaschi H. O clima como fator determinante da fenologia das plantas (2007) In: Rego GM, Negrelle RRB, Morellato LC (orgs). Fenologia ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. 1. ed. Colombo: Embrapa Florestas, pp 291–310.

  • Borchert R, Calle Z, Strahler AH, Baertschi A, Magill RE, Broadhead J Muthuri, C (2015) Insolation and photoperiodic control of tree development near the equator. New Phytol https://doi.org/10.1111/nph.12981

  • Camargo MGC, Souza RM, Reys P, Morellato LPC (2011) Effects of environmental conditions associated to the cardinal orientation of the reproductive phenology of the cerrado savanna tree Xylopia aromatica (Annonaceae). An Acad Bras Ciênc. https://doi.org/10.1590/S0001-37652011005000014

    Article  Google Scholar 

  • Christianini AV, Oliveira OS (2013) Edge effects decrease ant-derived benefits to seedlings in a neotropical savanna. Arthropod-Plant Interactions. https://doi.org/10.1007/s11829-012-9229-9

    Article  Google Scholar 

  • Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Annu Rev Ecol Syst. https://doi.org/10.1146/annurev.es.18.110187.002243

    Article  Google Scholar 

  • Estiarte M, Peñuelas J (2015) Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob Change Biol. https://doi.org/10.1111/gcb.12804

  • Farias RP, Costa LEN, Silva IAA, Barros ICL (2015) Phenological studies of selected leaf and plant traits of Didymochlaena truncatula (Dryopteridaceae) in a Brazilian submontane tropical rainforest. Nord J Bot. https://doi.org/10.1111/njb.00656

    Article  Google Scholar 

  • Flora Do Brasil 2020 em construção. In: Samambaias e Licófitas. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB128483>. Accessed 04 jan 2017

  • Fournier LA (1974) Un metodo cuantitativo para la medición de caracteristicas fenológicas en arboles. Turrialba 24(4):422–423

    Google Scholar 

  • Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conserv Biol 17(1):149–157

    Article  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol. https://doi.org/10.1016/j.ydbio.2016.07.023

  • INMET (1979) Normais climatológicas do Brasil (1961–1990). Ministério da Agricultura, Rio de Janeiro, 2ª edição

  • Ishino MN, de Sibio PR, Rossi MN (2012) Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado. Braz. J Biol https://doi.org/10.1590/S1519-69842012000300023

  • Jackson SD (2009) Plant responses to photoperiod. New Phytol. https://doi.org/10.1111/j.1469-8137.2008.02681.x

    Article  Google Scholar 

  • Kapos V, Wandelli E, Camargo JS, Ganade G (1997) Edge-related changes in environment and plant responses due to forest fragmentation in Central Amazonia. In: Laurance WF, Bierregaard-Jr RO (eds) Tropical forest remnants: ecology, management, and conservation of fragmented communities. Chicago University Press, Chicago, pp 33–44

    Google Scholar 

  • Kovach WL (2009) Oriana – Circular Statistics for Windows. Version 3. Kovach Computing Services, Pentraeth, Wales, U.K

  • Landenberger RE, Ostergren DA (2002) Eupatorium rugosum (Asteraceae) flowering as an indicator of edge effect from clearcutting in mixed-mesophytic forest. For Ecol Manag https://doi.org/10.1016/S0378-1127(01)00547-3

  • Larcher W (2000) Ecofisiologia vegetal. São Carlos: Rima

  • Laurance WF, Rankin-de Merona JM, Andrade A, Laurance SG, D’Angelo S, Lovejoy TE, Vasconcelos HL (2003) Rain-forest fragmentation and the phenology of Amazonian tree communities. J Trop Ecol. https://doi.org/10.1017/S0266467403003389

    Article  Google Scholar 

  • Liang L, Schwartz MD (2009) Landscape phenology: an integrative approach to seasonal vegetation dynamics. Landsc Ecol. https://doi.org/10.1007/s10980-009-9328-x

    Article  Google Scholar 

  • Magrach A, Santamaría L, Larrinaga AR (2012) Differential effects of anthropogenic edges and gaps on the reproduction of a forest-dwelling plant: the role of plant reproductive effort and nectar robbing by bumblebees. Austral Ecol. https://doi.org/10.1111/j.1442-9993.2011.02320.x

    Article  Google Scholar 

  • Matlack GR (1994) Vegetation dynamics of the forest edge-trends in space and successional time. J Ecol. https://doi.org/10.2307/2261391

    Article  Google Scholar 

  • Mehltreter K (2008) Phenology and habitat specificity of tropical ferns. In: Ranker TA, Haufler CH (eds) Biology and evolution of fern and lycophytes. Cambridge University Press, Cambridge, RU, pp 201–221

    Chapter  Google Scholar 

  • MMA/SBF (2002) Ministério do Meio Ambiente e Secretaria de Biodiversidade e Florestas. Avaliação e identificação de áreas e ações prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. Brasília: MMA/SBF

  • Morellato LPC (2003) Características dos padrões fenológicos em Florestas Estacionais Neotropicais. In: Claudino-Sales V (org.) Ecossistemas brasileiros: manejo e conservação. Fortaleza: Expressão Gráfica e Editora

  • Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of atlantic rain forest trees: a comparative study. Biotropica. https://doi.org/10.1111/j.1744-7429.2000.tb00620.x

  • Morellato LPC, Alberti LF, Hudson IL (2010a) Applications of circular statistics in plant phenology: a case studies approach. In: Keatley M, Hudson IL (org). Phenological research: methods for environmental and climate change analysis. 1 ed. Springer. https://doi.org/10.1007/978-90-481-3335-2_16

  • Morellato LPC, Camargo GC, Neves F, Luize BG, Mantovani A, Hudson I (2010b) The influence of sampling method, sample size, and frequency of observations on plant phenological patterns and interpretation in tropical forest trees. In: Hudson IL, Keatley MR (eds). Phenological research: methods for environmental and climate change analysis. Springer Netherlands. https://doi.org/10.1007/978-90-481-3335-2_5

  • Müller A, Cunha S, Junges F, Schmitt JL (2016) Efeitos climáticos sobre a fenologia de Lindsaea lancea (L.) Bedd. (Lindsaeaceae) em fragmento de floresta Atlântica no sul do Brasil. Interciencia 41:34–39

    Google Scholar 

  • Müller A, Correa MZ, Führ CS, Padoin TOH, Quevedo DM, Schmitt JL (2019) Neotropical ferns community phenology: climatic triggers in subtropical climate in Araucaria forest. IJBM. https://doi.org/10.1007/s00484-019-01755-5

    Article  Google Scholar 

  • Müller A, Correa MZ, Führ CS, Padoin TOH, Quevedo DM, Schmitt JL (2021) The effects of natural and artificial edges on phenology: a case study of Ctenitis submarginalis. Austral Ecol. https://doi.org/10.1111/aec.12994

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(00)88977-6

  • Observatório Nacional (ON, 2017) Anuário do Observatório Nacional, Seção B – Nascer, Passagem Meridiana e Ocaso do Sol, Lua e Planetas. <http://euler.on.br/ephemeris/index.php>. Accessed 12 dec 2017

  • Paciencia MLB, Prado J (2005) Effects of forest fragmentation on pteridophyte diversity in a tropical rain forest in Brazil. Plant Ecol. https://doi.org/10.1007/s11258-005-3025-x

    Article  Google Scholar 

  • Padoin TOH, Müller A, Schmitt JL (2016) Fenologia de Blechnum acutum (Desv.) Mett. (Blechnaceae) em Floresta Atlântica Subtropical. RBGF. https://doi.org/10.26848/rbgf.v9.6.p1644-1656

  • Page CN (1979) The diversity of ferns. An ecological perspective. In: Dyer AF. The experimental biology of ferns. London: Academic Press, pp. 10–53

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-11-1633-2007

  • Pereira TS, Costa MLMN, Moraes LFD, Luchiari C (2008) Fenologia de espécies arbóreas de floresta atlântica de Reserva Biológica de Poços das Antas, Rio de Janeiro, Brasil. Iheringia, Série Botânica 63(2):329–339

    Google Scholar 

  • Peres CA, Barlow J, Laurance WF (2006) Detecting anthropogenic disturbance in tropical forests. Trends Ecol Evol. https://doi.org/10.1016/j.tree.2006.03.007

    Article  Google Scholar 

  • PPG I (2016) A community-derived classification for extant lycophytes and ferns. Jnl of Sytematics Evolution. https://doi.org/10.1111/jse.12229

  • R Core Team (2017) R: A Language and Environment for Statistical Computing. http://softlibre.unizar.es/manuales/aplicaciones/r/fullrefman.pdf

  • Ramos FN, Santos FAM (2006) Microclimate of Atlantic Forest fragments: regional and local scale heterogeneity. Braz Arch Biol Technol. https://doi.org/10.1590/S1516-89132006000700011

    Article  Google Scholar 

  • Ranal MA (1995) Estabelecimento de pteridófitas em Mata Mesófila Semidecídua do estado de São Paulo. 3. Fenologia e Sobrevivência dos Indivíduos. Rev Bras Biol 55:777–787

    Google Scholar 

  • Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74

    Article  Google Scholar 

  • Restrepo C, Gomez N, Heredia S (1999) Anthropogenic edges, treefall gaps, and fruit-frugivore interactions in a Neotropical Montane Forest. Ecology. https://doi.org/10.1890/0012-9658(1999)080[0668:AETGAF]2.0.CO;2

    Article  Google Scholar 

  • Reznik G, Pires JPA, Freitas L (2012) Efeito de bordas lineares na fenologia de espécies arbóreas zoocóricas em um remanescente de Mata Atlântica. Acta Bot Bras. https://doi.org/10.1590/S0102-33062012000100008

  • Rigby RA, Stasinopoulos DM (2007) Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. J. Stat. Softw. https://doi.org/10.18637/jss.v023.i07

  • Rivera G, Borchert R (2001) Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium specimens. Tree Physiol. https://doi.org/10.1093/treephys/21.4.201

    Article  Google Scholar 

  • Rodrigues PJFP, Nascimento MT (2006) Fragmentação florestal: breves considerações teóricas sobre efeitos de borda. Rodriguésia. https://doi.org/10.1590/2175-7860200657105

    Article  Google Scholar 

  • Schmitt JL, Windisch PG (2012) Caudex growth and phenology of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) in secondary forest, southern Brazil. Braz J Biol. https://doi.org/10.1590/S1519-69842012000200023

  • Schmitt JL, Schneider PH, Windisch PG (2009) Crescimento do cáudice e fenologia de Dicksonia sellowiana Hook. (Dicksoniaceae) no sul do Brasil. Acta Bot. Bras. https://doi.org/10.1590/S0102-33062009000100030

  • Sehnem A (1979) Semelhanças e diferenças nas formações florestais do Sul do Brasil. Acta Biologica Leopoldensia 1:111–135

    Google Scholar 

  • Sharpe JM, Mehltreter K (2010) Ecological insights from fern population dynamics. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambrigde University Press, Cambridge, UK, pp 61–110

    Chapter  Google Scholar 

  • Silva VL, Schmitt JL (2015) The effects of fragmentation on Araucaria Forest: analysis of the fern and lycophyte communities at sites subject to different edge conditions. Acta Bot Bras. https://doi.org/10.1590/0102-33062014ABB3760

  • Silva IAA, Pereira AFN, Barros ICL (2011) Edge effects on fern community in an Atlantic Forest remnant of Rio Formoso, PE, Brazil. Braz J Biol https://doi.org/10.1590/S1519-69842011000300011

  • Souza KRMS, Silva IAA, Farias RP, Barros ICL (2013) Fenologia de três espécies de Adiantum L. (Pteridaceae) em fragmento de Floresta Atlântica no estado de Pernambuco. Brasil Neotrop Biol Conserv 2:96–102. https://doi.org/10.4013/nbc.2013.82.05

    Article  Google Scholar 

  • Tardieu F (2013) Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol. https://doi.org/10.3389/fphys.2013.00017

    Article  Google Scholar 

  • Thomas B (2006) Light signals and flowering. J Exp Bot. https://doi.org/10.1093/jxb/erl071

    Article  Google Scholar 

  • Viana VM, Tabanez AAJ, Batista JL (1997) Dynamics and restoration of forest fragments in the Brazilian Atlantic Moist Forest. In: Laurance WF, Bierregaard RO. Tropical forest remnants: ecology, management, and conservation of fragmented communities, Chicago University Press, New York, pp. 351–365.

  • Vogado NO, Camargo MGG, Locosselli GM, Morellato LPC (2016) Edge effects on the phenology of the guamirim, Myrcia guianensis (Myrtaceae), a cerrado tree. Brazil Trop Conserv Sci 9:278–300

    Google Scholar 

  • Walker LR, Sharpe JM (2010) Ferns, disturbance and succession. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambrigde University Press, Cambridge, UK, pp 177–219

    Chapter  Google Scholar 

  • Williams-Linera G (2003) Temporal and spatial phenological variation of understory shrubs in a tropical montane cloud forest. Biotropica. https://doi.org/10.1111/j.1744-7429.2003.tb00259.x

    Article  Google Scholar 

  • Woo HR, Goh CH, Park JH, de la Serve BT, Kim JH, Park YI, Nam HG (2002) Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J. https://doi.org/10.1046/j.1365-313x.2002.01355.x

    Article  Google Scholar 

  • World Meteorological Organization (2022) Standards and recommended practices. < https://public.wmo.int/en/resources/standards-technical-regulations>. Accessed 15 dez 2015

  • Wrege MS, Fritzsons E, Soares MTS, Souza VA (2015) Variáveis climáticas relacionadas aos serviços ambientais: estudo de caso da araucária. In: Parron LM, Garcia JR, Oliveira EB, Brown GG, Prado RB (eds). Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Brasília, DF, Embrapa. pp. 242–247

  • Zhu J, Lu D, Zhang W (2014) Effects of gaps on regeneration of woody plants: a meta-analysis. J for Res. https://doi.org/10.1007/S11676-014-0489-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Feevale University infrastructure.

Funding

This work was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Process no 409972/2016–9); and scholarships granted by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for AM and TOHP, by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) to MZC, and by CNPq to the CSF and JLS is supported by CNPq (PQ-308926/2017–0).

Author information

Authors and Affiliations

Authors

Contributions

Andressa Müller: conceptualization (lead); formal analysis (lead); investigation (lead); methodology (lead); validation (lead); visualization (lead); writing-original draft (lead). Marina Zimmer Correa: investigation (supporting); methodology (supporting). Camila Storck Führ: investigation (supporting); methodology (supporting). Thábia Ottília Hofstetter Padoin: investigation (supporting); methodology (supporting). Daniela Müller de Quevedo: formal analysis (equal); methodology (equal); supervision (equal); validation (equal). Jairo Lizandro Schmitt: conceptualization (supporting); funding acquisition (lead); investigation (supporting); resources (supporting); supervision (equal); validation (equal).

Corresponding author

Correspondence to Andressa Müller.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, A., Correa, M.Z., Führ, C.S. et al. Phenology of Araucaria Forest fern communities: comparison of the influence of natural edge, artificial edge, and forest interior. Int J Biometeorol 66, 2259–2271 (2022). https://doi.org/10.1007/s00484-022-02354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02354-7

Keywords

Navigation