Skip to main content

Advertisement

Log in

Improving street walkability: Biometeorological assessment of artificial-partial shade structures in summer sunny conditions

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Recent rapid urbanization has rendered outdoor space a key quality-of-life factor, yet walkability studies especially in hot-humid climates have seldom considered human biometeorology. This site-level study investigated microclimatic functions of an overhead structure in improving walkability, and identified biometeorology-related factors influencing pedestrian behaviour. A walkway with overhead tinted glass cover, demarcated into sunny zone and shaded zone, was equipped with hanging aluminium fins. Human thermal sensation was approximated by physiologically equivalent temperature (PET) and universal thermal climate index (UTCI), both closely related to global solar radiation and black-globe temperature. Pedestrian flow was tallied by demographic factors to assess the choice between shaded or sunny zones. Compared with sunny zone, shaded zone slashed maximum global solar radiation by 432 W/m2 in full effect to achieve 90% solar radiation reduction. The maximum cooling in air and black-globe temperatures reached 0.8 °C and 6.1 °C respectively. The overhead structure imposed minimal effect on wind field in both zones. Contrast in maximum PET and UTCI between the two zones reached 8.2 °C and 5.3 °C respectively. In shaded zone, the dominant biometeorological condition was moderate heat stress or slightly warm sensation in contrast to strong heat stress or warm sensation in sunny zone. An overall preference for shaded zone was detected. Pedestrian gender and age, namely female and elderly, were significantly associated with shaded zone preference. The findings could inspire a biometeorological perspective in understanding walking behaviour and pedestrian-friendly facilities. Biometeorological-sensitive design of artificial shade could improve walkability in urban environment that increasingly demands climate change proofing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu-Harbich LV, Labaki LC, Matzarakis A (2014) Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theor Appl Climatol 115(1–2):333–340

    Article  Google Scholar 

  • Achour-Younsi S, Kharrat F (2016) Outdoor thermal comfort: impact of the geometry of an urban street canyon in a Mediterranean subtropical climate–case study Tunis, Tunisia. Procedia Soc Behav Sci 216:689–700

    Article  Google Scholar 

  • Ahmed KS (2003) Comfort in urban spaces: defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy and Buildings 35(1):103–110

    Article  Google Scholar 

  • Algeciras JAR, Gomez Consuegra L, Matzarakis A (2016) Spatial-temporal study on the effects of urban street configurations on human thermal comfort in the world heritage city of Camaguey-Cuba. Build Environ 101:85–101

    Article  Google Scholar 

  • Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol Energy 81(6):742–754

    Article  Google Scholar 

  • Ali-Toudert F, Djenane M, Bensalem R, Mayer H (2005) Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim Res 28(3):243–256

    Article  Google Scholar 

  • ASHRAE (2001) ASHRAE fundamentals handbook 2001, SI edn. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta

  • Berkovic S, Yezioro A, Bitan A (2012) Study of thermal comfort in courtyards in a hot arid climate. Sol Energy 86(5):1173–1186

    Article  Google Scholar 

  • Blazejczyk K, Broede P, Fiala D, Havenith G, Holmér I, Jendritzky G, Kampmann B, Kunert A (2010a) Principles of the new universal thermal climate index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica 14(1):91–102

    Article  Google Scholar 

  • Blazejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2010b) An introduction to the universal thermal climate index (UTCI). Geogr Pol 86(1):5–10

    Article  Google Scholar 

  • Booth ML, Owen N, Bauman A, Clavisi O, Leslie E (2000) Social–cognitive and perceived environment influences associated with physical activity in older Australians. Prev Med 31(1):15–22

    Article  CAS  Google Scholar 

  • Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeorol 56(3):481–494

    Article  Google Scholar 

  • Campbell GS, Norman JM (2012) An introduction to environmental biophysics. Springer Science & Business Media, Berlin

    Google Scholar 

  • Candas V, Dufour A (2005) Thermal comfort: multisensory interactions? J Physiol Anthropol Appl Hum Sci 24(1):33–36

    Article  Google Scholar 

  • Chan CB, Ryan DA, Tudor-Locke C (2006) Relationship between objective measures of physical activity and weather: a longitudinal study. Int J Behav Nutr Phys Act 3(1):21

    Article  Google Scholar 

  • Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 29 (2):118–125

  • Cheng V, Ng E (2006) Thermal comfort in urban open spaces for Hong Kong. Archit Sci Rev 49(3):236–242

    Article  Google Scholar 

  • Cheng V, Ng E, Chan C, Givoni B (2012) Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. Int J Biometeorol 56(1):43–56

    Article  Google Scholar 

  • Cheung PK, Jim CY (2017) Determination and application of thermal benchmarks. Build Environ 123:333–350

    Article  Google Scholar 

  • Cheung PK, Jim CY (2018a) Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Build Environ 130:49–61

    Article  Google Scholar 

  • Cheung PK, Jim CY (2018b) Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. Energy Build 173:150–162

    Article  Google Scholar 

  • Cheung PK, Jim CY (2019) Improved assessment of outdoor thermal comfort: 1-hour acceptable temperature range. Build Environ 151:303–317

    Article  Google Scholar 

  • David M, Donn M, Garde F, Lenoir A (2011) Assessment of the thermal and visual efficiency of solar shades. Build Environ 46(7):1489–1496

    Article  Google Scholar 

  • Durvasula S, Kok C, Sambrook PN, Cumming RG, Lord SR, March LM, Mason RS, Seibel MJ, Simpson JM, Cameron ID (2010) Sunlight and health: attitudes of older people living in intermediate care facilities in southern Australia. Arch Gerontol Geriatr 51(3):94–99

    Article  Google Scholar 

  • Eliasson I, Knez I, Westerberg U, Thorsson S, Lindberg F (2007) Climate and behaviour in a Nordic city. Landsc Urban Plan 82(1–2):72–84

    Article  Google Scholar 

  • Ewing R, Handy S (2009) Measuring the unmeasurable: urban design qualities related to walkability. J Urban Des 14(1):65–84

    Article  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441

    Article  Google Scholar 

  • Forsyth A (2015) What is a walkable place? The walkability debate in urban design. Urban Des Int 20(4):274–292

    Article  Google Scholar 

  • Forsyth A, Southworth M (2008) Cities afoot—pedestrians, walkability and urban design. J Urban Des 13(1):1

    Article  Google Scholar 

  • Fung CK, Jim CY (2017) Assessing the cooling effects of different vegetation settings in a Hong Kong golf course. Procedia Environ Sci 37:626–636

    Article  Google Scholar 

  • Grimes DS, Hindle E, Dyer T (1996) Sunlight, cholesterol and coronary heart disease. QJM: An International Journal of Medicine 89(8):579–590

    Article  CAS  Google Scholar 

  • Google Maps (2019) Google map showing University Street. https://www.google.com/maps/@22.2819141,114.1349547,17z

  • Henry CJK, Lightowler HJ, Al-Hourani HM (2004) Physical activity and levels of inactivity in adolescent females ages 11–16 years in the United Arab Emirates. Am J Human Biol: The Official Journal of the Human Biology Association 16(3):346–353

    Article  Google Scholar 

  • Hong Kong Observatory (2015). Monthly Meteorological Normals for Hong Kong. https://www.hko.gov.hk/tc/cis/normal/1981_2010/normals.htm

  • Ho-Pham L, Nguyen M (2014) Survey on knowledge and attitudes on vitamin D and sunlight exposure in an urban population in Vietnam. J ASEAN Fed Endocr Soc 27(2):191

    Google Scholar 

  • Höppe, P. (1984). Die energiebilanz des menschen (Vol. 49). Universitat Munchen, Meteorologisches Institut

  • Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75

    Article  Google Scholar 

  • Huang J, Zhou C, Zhuo Y, Xu L, Jiang Y (2016) Outdoor thermal environments and activities in open space: an experiment study in humid subtropical climates. Build Environ 103:238–249

    Article  Google Scholar 

  • Huang T, Li J, Xie Y, Niu J, Mak CM (2017) Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Build Environ 125:502–514

    Article  Google Scholar 

  • Hwang RL, Lin TP, Matzarakis A (2011) Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build Environ 46(4):863–870

    Article  Google Scholar 

  • International Organization for Standardization, & International Electrotechnical Commission. (1998). Ergonomics of the thermal environment: instruments for measuring physical quantities (Vol. 7726). International Organization for Standardization

  • Jamei E, Rajagopalan P, Seyedmahmoudian M, Jamei Y (2016) Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew Sust Energ Rev 54:1002–1017

    Article  Google Scholar 

  • Johansson E (2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build Environ 41(10):1326–1338

    Article  Google Scholar 

  • Johansson E, Thorsson S, Emmanuel R, Krüger E (2014) Instruments and methods in outdoor thermal comfort studies – the need for standardization. Urban Clim 10:346–366

    Article  Google Scholar 

  • Kim G, Lim HS, Lim TS, Schaefer L, Kim JT (2012) Comparative advantage of an exterior shading device in thermal performance for residential buildings. Energy and Buildings 46:105–111

    Article  Google Scholar 

  • Knez I, Thorsson S (2006) Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. Int J Biometeorol 50(5):258–268

    Article  Google Scholar 

  • Kung AW, Lee KK (2006) Knowledge of vitamin D and perceptions and attitudes toward sunlight among Chinese middle-aged and elderly women: a population survey in Hong Kong. BMC Public Health 6(1):226

    Article  Google Scholar 

  • Lai D, Guo D, Hou Y, Lin C, Chen Q (2014) Studies of outdoor thermal comfort in northern China. Build Environ 77:110–118

    Article  Google Scholar 

  • Laurentin C, Bermtto V, Fontoynont M (2000) Effect of thermal conditions and light source type on visual comfort appraisal. Int J Light Res Technol 32(4):223–233

    Article  Google Scholar 

  • Lee LS, Jim CY (2017) Subtropical summer thermal effects of wirerope climber green walls with different air-gap depths. Build Environ 126:1–12

    Article  Google Scholar 

  • Lee LS, Jim CY (2018) Thermal-cooling performance of subtropical green roof with deep substrate and woodland vegetation. Ecol Eng 119:8–18

    Article  Google Scholar 

  • Lim SK, Kung AWC, Sompongse S, Soontrapa S, Tsai KS (2008) Vitamin D inadequacy in postmenopausal women in eastern Asia. Curr Med Res Opin 24(1):99–106

    Article  CAS  Google Scholar 

  • Lin TP (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ 44(10):2017–2026

    Article  Google Scholar 

  • Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52(4):281–290

    Article  Google Scholar 

  • Lin TP, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and eastern China. Tour Manag 32(3):492–500

    Article  Google Scholar 

  • Lin TP, Matzarakis A, Hwang RL (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45(1):213–221

    Article  Google Scholar 

  • Litman TA (2003) Economic value of walkability. Transp Res Rec 1828(1):3–11

    Article  Google Scholar 

  • Lo RH (2009) Walkability: what is it? J Urban 2(2):145–166

    Google Scholar 

  • Makaremi N, Salleh E, Jaafar MZ, Ghaffarian-Hoseini A (2012) Thermal comfort conditions of shadowed outdoor spaces in hot and humid climate of Malaysia. Build Environ 48:7–14

    Article  Google Scholar 

  • Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsletter 18(January 1996):7–10

    Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139

    Article  Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49

    Article  Google Scholar 

  • Middel A, Selover N, Hagen B, Chhetri N (2016) Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. Int J Biometeorol 60(12):1849–1861

    Article  Google Scholar 

  • Moura F, Cambra P, Gonçalves AB (2017) Measuring walkability for distinct pedestrian groups with a participatory assessment method: a case study in Lisbon. Landsc Urban Plan 157:282–296

    Article  Google Scholar 

  • Ng E, Cheng V (2012) Urban human thermal comfort in hot and humid Hong Kong. Energy Build 55:51–65

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2007) Use of outdoor spaces and microclimate in a Mediterranean urban area. Build Environ 42(10):3691–3707

    Article  Google Scholar 

  • Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build 35(1):95–101

    Article  Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter. Sol Energy 70(3):227–235

    Article  Google Scholar 

  • Nimitphong H, Holick MF (2013) Vitamin D status and sun exposure in Southeast Asia. Dermato-endocrinology 5(1):34–37

    Article  CAS  Google Scholar 

  • Niu J, Liu J, Lee TC, Lin ZJ, Mak C, Tse KT, Tang BS, Kwok KC (2015) A new method to assess spatial variations of outdoor thermal comfort: onsite monitoring results and implications for precinct planning. Build Environ 91:263–270

    Article  Google Scholar 

  • Pantavou K, Theoharatos G, Santamouris M, Asimakopoulos D (2013) Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Build Environ 66:82–95

    Article  Google Scholar 

  • Qaid A, Ossen DR (2015) Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int J Biometeorol 59(6):657–677

    Article  Google Scholar 

  • Salata F, Golasi I, de LietoVollaro R, de Lieto Vollaro A (2016) Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build Environ 96:46–61

    Article  Google Scholar 

  • Sharmin T, Steemers K, Matzarakis A (2015) Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. Build Environ 94:734–750

    Article  Google Scholar 

  • Silva JP, Akleh AZ (2018) Investigating the relationships between the built environment, the climate, walkability and physical activity in the Arabian Peninsula: the case of Bahrain. Cogent Soc Sci 4(1):1–21

    Google Scholar 

  • Southworth M (2005) Designing the walkable city. J urban plan Dev 131(4):246–257

    Article  Google Scholar 

  • Spagnolo J, De Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38(5):721–738

    Article  Google Scholar 

  • Sundquist K, Eriksson U, Kawakami N, Skog L, Ohlsson H, Arvidsson D (2011) Neighborhood walkability, physical activity, and walking behavior: The Swedish Neighborhood and Physical Activity (SNAP) study. Social Science & Medicine 72 (8):1266–1273

  • Talen E, Koschinsky J (2013) The walkable neighborhood: a literature review. Int J Sustain Land Use Urban Plan 1(1):42–63

    Google Scholar 

  • Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int J Biometeorol 48(3):149–156

    Article  Google Scholar 

  • Thorsson S, Honjo T, Lindberg F, Eliasson I, Lim EM (2007) Thermal comfort and outdoor activity in Japanese urban public places. Environ Behav 39(5):660–684

    Article  Google Scholar 

  • Tung CH, Chen CP, Tsai KT, Kántor N, Hwang RL, Matzarakis A, Lin TP (2014) Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective. Int J Biometeorol 58(9):1927–1939

    Article  Google Scholar 

  • Van Cauwenberg J, Van Holle V, De Bourdeaudhuij I, Van Dyck D, Deforche B (2016) Neighborhood walkability and health outcomes among older adults: the mediating role of physical activity. Health Place 37:16–25

    Article  Google Scholar 

  • Van Dyck D, Deforche B, Cardon G, De Bourdeaudhuij I (2009) Neighbourhood walkability and its particular importance for adults with a preference for passive transport. Health Place 15(2):496–504

    Article  Google Scholar 

  • Wang Z, Lee C (2010) Site and neighborhood environments for walking among older adults. Health Place 16(6):1268–1279

    Article  Google Scholar 

  • Watanabe S, Ishii J (2016) Effect of outdoor thermal environment on pedestrians’ behavior selecting a shaded area in a humid subtropical region. Build Environ 95:32–41

    Article  Google Scholar 

  • Woo J, Lam CW, Leung J, Lau WY, Lau E, Ling X, Xing X, Zhao XH, Skeaff CM, Bacon CJ, Rockell JEP, Lambert A, Whitning SJ, Green TJ (2008) Very high rates of vitamin D insufficiency in women of child-bearing age living in Beijing and Hong Kong. Br J Nutr 99(6):1330–1334

    Article  CAS  Google Scholar 

  • Yang W, Wong NH, Jusuf SK (2013) Thermal comfort in outdoor urban spaces in Singapore. Build Environ 59:426–435

    Article  Google Scholar 

  • Yao J (2014) An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Build Environ 71:24–32

    Article  Google Scholar 

  • Zacharias J, Stathopoulos T, Wu H (2001) Microclimate and downtown open space activity. Environ Behav 33(2):296–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Jim.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, L.S.H., Cheung, P.K., Fung, C.K.W. et al. Improving street walkability: Biometeorological assessment of artificial-partial shade structures in summer sunny conditions. Int J Biometeorol 64, 547–560 (2020). https://doi.org/10.1007/s00484-019-01840-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-019-01840-9

Keywords

Navigation