Skip to main content
Log in

Determining the K coefficient to leaf area index estimations in a tropical dry forest

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and Kmax (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere. This model can be applied to distinguish different successional stages of TDFs, supporting environmental monitoring and conservation policies towards this biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen K, Dupuy JM, Gei MG, Hulshof C, Medvigy D, Pizano C, Salgado-Negret B, Smith CM, Trierweiler A, Van Bloem SJ, Waring BG, Xu X, Powers JS (2017) Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ Res Lett 12(2):023001

    Article  Google Scholar 

  • Antunes FZ (1994) Caracterização Climática – Caatinga do Estado de Minas Gerais. Inf Agropecuário 17:15–19

    Google Scholar 

  • Arroyo-Mora JP, Sánchez-Azofeifa GA, Rivard B, Calvo-Alvarado JC (2005) Secondary forest detection in a neotropical dry forest landscape using Landsat 7 ETM+ and IKONOS imagery. Biotropica 37:497–507

    Article  Google Scholar 

  • Asner GP, Bateson C, Privette J, El Saleous N, Wessman C (1998) Estimating vegetation structural effects on carbon uptake using satellite data fusion and inverse modeling. J Geophys Res 103:28839–28853. https://doi.org/10.1029/98JD02459

    Article  CAS  Google Scholar 

  • Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12:191–205

    Article  Google Scholar 

  • Bonan GB (1995) Land–atmosphere interactions for climate system models: coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens Environ 51:57–73

    Article  Google Scholar 

  • Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417

    Article  Google Scholar 

  • Calvo-Rodriguez S, Sanchez-Azofeifa GA (2016). Light diffusion in the tropical dry forest of Costa Rica. Int Arch Photogramm Remote Sens Spat Inf Sci 41:579–583. https://doi.org/10.5194/isprsarchives-XLI-B8-579-2016

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer, New York, pp 247–260

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–252

    Article  Google Scholar 

  • Clark DB, Olivas PC, Oberbauer SF, Clark DA, Ryan MG (2008) First direct landscape-scale measurement of tropical rain forest leaf area index, a key driver of global primary productivity. Ecol Lett 11:163–172

    Google Scholar 

  • Crawley M J (2002) Statistical computing: an introduction to data analysis using S. Plus. John Wiley, Chichester, p 630

  • Disney M, Lewis P, Thackrah G, Quaife T, Barnsley M (2004) Comparison of MODIS broadband albedo over an agricultural site with ground measurements and values derived from earth observation data at a range of spatial scales. Int J Remote Sens 25:5297–5317

    Article  Google Scholar 

  • Espírito-Santo MM, Olívio-Leite L, Neves FS, Ferreira-Nunes YR, Zazá-Borges MA, Dolabela-Falcão LA, Fonseca-Pezzini F, Louro-Berbara R, Maia-Valério H, Fernandes GW, Reinaldo-Leite M, Santos-Clemente CM, Esdras-Leite M (2014) Tropical dry forests of northern Minas Gerais, Brazil: diversity, conservation status, and natural regeneration. In: Sánchez-Azofeifa GA, Powers JS, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas, 1st edn. Taylor and Francis Group, CRC Press, Oxford, pp 69–81

    Google Scholar 

  • Fournier RA, Mailly D, Walter JM, Soudani K (2003) Indirect measurement of forest canopy structure from in situ optical sensors. In: Wulder MA, Franklin SE (eds) Remote sensing of forest environments. Springer, Boston, pp 77–114

    Chapter  Google Scholar 

  • Frazer, GW, Canham, CD and Lertzman, KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Copyright © 1999: Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York

  • Gallardo-Cruz JA, Meave JA, González EJ, Lebrija-Trejos EE, Romero-Romero MA, Párez-García EA, Gallardo-Cruz R, Hernández-Stefanoni JL, Martorell C (2012) Predicting tropical dry forest successional attributes from space: is the key hidden in image texture? PLoS One 7:1–12

    Article  CAS  Google Scholar 

  • Gonsamo A (2009) Remote sensing of leaf area index: enhanced retrieval from close-range and remotely sensed optical observations. Dissertation, University of Helsinki

  • Goswami S, Gamon J, Vargas S, Tweedie C (2015) Relationships of NDVI, biomass, and leaf area index (LAI) for six key plant species in Barrow, Alaska. PeerJ PrePrints 3:e913v1. https://doi.org/10.7287/peerj.preprints.913v1

    Article  Google Scholar 

  • Hesketh M, Sánchez-Azofeifa GA (2014) A review of remote sensing of tropical dry forests. Tropical dry forests of northern Minas Gerais, Brazil: diversity, conservation status, and natural regeneration. In: Sánchez-Azofeifa GA, Powers JS, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas. Taylor and Francis Group, CRC Press, Oxford, pp 69–81

    Google Scholar 

  • Huang, Y, Sánchez-Azofeifa G A, Benoit R, Quesada M (2014) Linkages among ecosystem structure, composition, and leaf area index along a tropical dry forest chronosequence in Mexico. In: Sánchez-Azofeifa GA, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation and management. CRC Press, Boca Raton, pp 267–280

  • Jacquemoud S, Baret F, Hanocq JF (1992) Modeling spectral and bidirectional soil reflectance. Remote Sens Environ 41:123–132

    Article  Google Scholar 

  • Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith ML (2007) Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric For Meteorol 143(1–2):64–79

    Article  Google Scholar 

  • Kalácska M, Sánchez-Azofeifa GA, Rivard B, Calvo-Alvarado JC, Journet ARP, Arroyo-Mora JP, Ortiz-Ortiz D (2004a) Leaf area index measurements in a tropical moist forest: a case study from Costa Rica. Remote Sens Environ 91:134–152

    Article  Google Scholar 

  • Kalácska M, Sánchez-Azofeifa GA, Calvo-Alvarado JC, Quesada M, Rivard B, Janzen D (2004b) Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For Ecol Manag 200:227–247

    Article  Google Scholar 

  • Kalácska M, Calvo-Alvarado JC, Sánchez-Azofeifa GA (2005a) Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol 25:733–744

    Article  Google Scholar 

  • Kalácska M, Sánchez-Azofeifa GA, Calvo-Alvarado JC, Rivard B, Quesada M (2005b) Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forests. Biotropica 37:486–496

    Article  Google Scholar 

  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  Google Scholar 

  • Lopezaraiza-Mikel M, Quesada M, Álvarez-Añorve M, Ávila-Cabadilla LA, Martén-Rodríguez S, Calvo-Alvarado J, Espírito-Santo MM, Fernandes GW, Sánchez-Azofeifa GA, Aguilar-Aguilar MJ, Balvino-Olvera F, Brandão D, Contreras-Sánchez JM, Correa-Santos J, Cristobal-Perez J, Fernandez P, Hilje B, Jacobi C, Fonseca-Pezzini F, Rosas F, Rosas-Guerrero V, Sánchez-Montoya G, Sáyago R, Vásquez-Ramírez A (2014) Phenological patterns of tropical dry forests along latitudinal and successional gradients in the Neotropics. In: Sánchez-Azofeifa GA, Powers JS, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas. Taylor and Francis Group, CRC Press, Oxford, pp 101–128

    Google Scholar 

  • Madeira BG, Espirito-Santo MM, Neto SD, Nunes YRF, Sánchez-Azofeifa GA, Fernandes GW, Quesada M (2009) Changes in tree and liana communities along a successional gradient in a tropical dry forest in southeastern Brazil. Plant Ecol 201:291–304

    Article  Google Scholar 

  • Manninen T, Stenberg P, Rautiainen M, Voipio P, Smolander H (2005) Leaf area index estimation of boreal forest using ENVISAT ASAR. IEEE Trans Geosci Remote Sens 43:2627–2635

    Article  Google Scholar 

  • Manrique LA, Jones CA, Dyke PT (1991) Predicting soil water retention characteristics from soil physical and chemical properties. Commun Soil Sci Plant Anal 22(17–18):1847–1860

    Article  CAS  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Opie K (2010) Hemispherical photograph analyzer user guide. Victoria, Australia. Available in: http://www.ittvis.com/ProductServices/IDL/IDLVirtualMachine.aspx

  • Pastorello GZ, Sánchez-Azofeifa GA, Nascimento MA (2011) Enviro-Net: from networks of ground-based sensor systems to a Web platform for sensor data management. Sensors 11:6454–6479

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pettorelli N, Vik J, Mysterud A, Gaillard J, Tucker C, Stenseth N (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trend Ecol Evol 20:503–510

    Article  Google Scholar 

  • Pezzini FF, Brandão DO, Ranieri BD, Espírito-Santo MM, Jacobi CM, Fernandes GW (2008) Polinização, dispersão de sementes e fenologia das espécies arbóreas do Parque Estadual da Mata Seca. MG Biota 1:37–45

    Google Scholar 

  • Pezzini FF, Ranieri BD, Brandão DO, Fernandes GW, Quesada M, Espírito-Santo MM, Jacobi CM (2014) Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosyst 148:965–974

    Article  Google Scholar 

  • Pontailler J, Hymus GJ, Drake BG (2003) Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques. Can J Remote Sens 29:381–387

    Article  Google Scholar 

  • Quesada M, Sánchez-Azofeifa GA, Alvarez-Añorve M, Stoner KE, Avila-Cabadilla L, Calvo-Alvarado J, Castillo A, Espírito-Santo MM, Fagundes M, Fernandes GW, Gamon J, Lopezaraiza-Mikel M, Lawrence D, Morellato LPC, Powers JS, Neves FS, Rosas-Guerrero V, Sayago R, Sánchez-Montoya G (2009) Succession and management of tropical dry forests in the Americas: review and new perspectives. For Ecol Manag 258:1014–1024

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing, Version 2.11.0. Vienna, Austria. Available in: http://www.r-project.org

  • Rankine C, Sánchez-Azofeifa GA, Guzmán JA, Espirito-Santo MM, Sharp I (2017) Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers. Environ Res Lett 12(10):105007

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Sánchez-Azofeifa GA, Quesada M, Rodríguez JP, Nassar JM, Stoner KE, Castillo A, Garvin T, Zent EL, Calvo-Alvarado JC, Kalácska MER, Fajardo L, Gamon JA, Cuevas-Reyes P (2005) Research priorities for Neotropical dry forests. Biotropica 37:477–485

    Google Scholar 

  • Sánchez-Azofeifa GA, Kalácska M, Espírito-Santo MM, Fernandes GW, Schnitzer S (2009) Tropical dry forest succession and the contribution of lianas to wood area index (WAI). For Ecol Manag 258:941–948

    Article  Google Scholar 

  • Souza SR (2014) Dinâmica de serapilheira em estágios sucessionais de uma floresta estacional decídua tropical. Dissertation, Universidade Estadual de Montes Claros

  • Turner DP, Cohen WB, Kennedy RE, Fassnacht KS, Briggs JM (1999) Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens Environ 70:52–68

    Article  Google Scholar 

  • Van Wijk MT, Williams M (2005) Optical instruments for measuring leaf area index in low vegetation: application in arctic ecosystems. Ecol Appl 15:1462–1470

    Article  Google Scholar 

  • Vasques GM, Coelho MR, Dart RO, Oliveira RP, Teixeira WG (2016) Mapping soil carbon, particle-size fractions, and water retention in tropical dry forest in Brazil. Pesq Agrop Brasileira 51:1371–1385. https://doi.org/10.1590/S0100-204X2016000900036

    Article  Google Scholar 

  • White MA, Asner GP, Nemani RR, Privette JL, Running SW (2000) Measuring fractional cover and leaf area index in arid ecosystems: digital camera, radiation transmittance, and laser altimetry methods. Remote Sens Environ 74:45–57

    Article  Google Scholar 

  • Wilson TB, Meyers TP (2007) Determining vegetation indices from solar and photosynthetically active radiation fluxes. Agric For Meteorol 144:160–179

    Article  Google Scholar 

  • Yang W (2006) Analysis, improvement and application of the MODIS leaf area index products. Dissertation, Boston University

Download references

Acknowledgements

The authors thank L. A. D. Falcão and R. Reis Jr. for their assistance in statistical analyses. We gratefully acknowledge the staff of the Instituto Estadual de Florestas (IEF-MG) for allowing us to stay and work at Mata Seca State Park (MSSP). S. F. Magalhães and MM Espírito-Santo greatly acknowledge a research scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and CNPq, respectively. We thank the National Science and Engineering Research Council of Canada (NSERC) for the financial support through its Discovery grant program. This study was in partial fulfillment of requirements for the Master degree at the Universidade Estadual de Montes Claros.

Funding

This work was carried out with the aid of a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq -563304/2010-3 and 562955/2010-0), Fundação de Amparo à Pesquisa de Minas Gerais - FAPEMIG, and the Inter-American Institute for Global Change Research (IAI - CRN 2021 and CRN 3025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Freitas Magalhães.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, S.F., Calvo-Rodriguez, S., do Espírito Santo, M.M. et al. Determining the K coefficient to leaf area index estimations in a tropical dry forest. Int J Biometeorol 62, 1187–1197 (2018). https://doi.org/10.1007/s00484-018-1522-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-018-1522-6

Keywords

Navigation