Skip to main content

Evaluation of the environmental epidemiologic data and methodology for the air quality standard in Beijing


To evaluate the relationship between exposure to air pollutants and respiratory emergency room visits, a generalized additive model (GAM) was used to analyze the exposure-effect relationship between air pollutants and respiratory emergency room visits. The results showed that NO2, SO2, and PM10 have positive relationships with respiratory disease. Concentration increases of 10 μg/m3 in NO2, SO2, and PM10 corresponded to 3.90% (95%CI 3.56–4.25), 0.81% (95%CI −0.09–1.72), and 0.64% (95%CI 0.55–0.74) increases in respiratory emergency room visits. In addition, there is a strong synergic effect of PM10 and NO2 on respiratory diseases. The threshold values of the national standard grade II limits used in Beijing should be adjusted. An appropriate standard could effectively promote a significant decline in respiratory room visits and would eventually be beneficial to air quality management in residential areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  • Abdelkrim Z (2001) Short-term effects of air pollution on mortality in the cities of Rouen and Le Havre, France, 1990-1995. Arch Environ Health 56(4):327–335

    Article  Google Scholar 

  • Ayres JG, Forsberg B, Annesi-Maesano I et al (2009) Climate changeand respiratory disease: European Respiratory Society position statement. Eur Respir J 34(2):295–302

    CAS  Article  Google Scholar 

  • Beelen R, Hoek G, Brandt PA et al (2008) Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect 116(2):196–202

    Article  Google Scholar 

  • Burkart K, Canário P, Breitner S et al (2013) Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ Pollut 183:54–63

    CAS  Article  Google Scholar 

  • Cao JS, Li WH, Tan JG et al (2009) Association of ambient air pollution with hospital out patient and emergency room visits in Shanghai, China. Sci Total Environ 407:5531–5536

    CAS  Article  Google Scholar 

  • Cecchi L, D’Amato G, Ayres JG et al (2010) Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy 65(9):1073–1081

    CAS  Google Scholar 

  • Chen H, Goldberg M, Burnett RT et al (2013) Long-term exposure to traffic-related air pollution and cardiovascular mortality. Epidemiology 24(1):35–43

    Article  Google Scholar 

  • Cohen AJ, Anderson HR, Ostro B et al (2005) The global burden of disease due to outdoor air pollution. J Toxicol Environ Health 68(13–14):1301–1307

    CAS  Article  Google Scholar 

  • D’Amato G, Cecchi L (2008) Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy 38(8):1264–1274

    Article  Google Scholar 

  • Dockery DW, Pope CA (1994) Acute respiratory effects of particulate air pollution. Annual Reviews of Public Health 15(1):107–132

    CAS  Article  Google Scholar 

  • Dominici F, McDermott A, Zeger SL et al (2002) On the use of generalized additive models in time-series studies of air pollution and health. Am J Epidemiol 156(3):193–203

    Article  Google Scholar 

  • Dominici F, McDermott A, Zeger SL et al (2003a) Airborne particulate matter and mortality: timescale effects in four US cities. Am J Epidemiol 157(12):1055–1065

    Article  Google Scholar 

  • Dominici F, McDernott A, Zeger S et al (2003b) National maps of the effects of particulate matter on mortality: exploring geographical variation. Environ Health Perspect 111(1):39–43

    Article  Google Scholar 

  • Dominici F, McDermott A, Hastie TJ (2004) Improved semiparametric time series models of air pollution and mortality. J Am Stat Assoc 99(468):938–948

    Article  Google Scholar 

  • Dong GH, Zhang PF, Sun BJ et al (2012) Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study. Respiration 84:360–368

    CAS  Article  Google Scholar 

  • Hastie T, Tibshirani R (1995) Generalized additive models for medical research. Stat Methods Med Res 4(3):187–196

    CAS  Article  Google Scholar 

  • James GW, Edward A, Fred L et al (2005) Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 16(6):737–743

    Article  Google Scholar 

  • Kan HD, Chen BH (2003) A case-crossover analysis of air pollution and daily mortality in Shanghai. J Occup Health 45(2):119–124

    CAS  Article  Google Scholar 

  • Kan H, London SJ, Chen G et al (2008) Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: the Public Health and Air Pollution in Asia (PAPA) Study. Environ Health Perspect 116:1183–1188

    CAS  Article  Google Scholar 

  • Peng RD, Dominici F, Louis TA (2006) Model choice in time series studies of air pollution and mortality. Journal of the Royal Statistical Society: Series A (statistics in society) 169(2):179–203

    Article  Google Scholar 

  • Qiu X, Zhu Y, Jang C et al (2015) Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control. Frontiers of Environmental Science & Engineering 9(6):1056–1065

    CAS  Article  Google Scholar 

  • Rijnders E, Janssen NAH, van Vliet PHN et al (2001) Personal and outdoor nitrogen dioxide concentrations in relation to degree of urbanization and traffic density. Environ Health Perspect 109(S3):411–417

    CAS  Article  Google Scholar 

  • Rosenlund M, Bellander T, Nordquist T et al (2009) Traffic-generated air pollution and myocardial infarction. Epidemiology 20(2):265–271

    Article  Google Scholar 

  • Schwartz J (1989) Lung function and chronic exposure to air pollution: a cross-sectional analysis of NHANES II. Environ Res 50(2):309–321

    CAS  Article  Google Scholar 

  • Tertre AL, Medina S, Samoli E et al (2002) Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Community Health 56:773–779

    Article  Google Scholar 

  • Walsh MP (2014) PM2.5: global progress in controlling the motor vehicle contribution. Frontiers of Environmental Science & Engineering 8(1):1–17

    CAS  Article  Google Scholar 

  • Wang MZ, Zheng S, Wang SG et al (2012) A time-series study on the relationship between gaseous air pollutants and daily hospitalization of respiratory disease in Lanzhou City. Journal of hygiene research 41(5):771–775

    Google Scholar 

  • Zhang FY, Li LP, Krafft T et al (2011) Study on the association between ambient air pollution and daily cardiovascular and respiratory mortality in an urban district of Beijing. Int J Environ Res Public Health 8(6):2109–2123

    Article  Google Scholar 

Download references


We, the authors, are grateful to the National Scientific Data Sharing Platform for Population and Health for data, the database of the Beijing Environmental Monitoring Center, and to the China Meteorological Data Sharing Service System for data support.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yanfeng Jiang or Pengfei Du.

Electronic supplementary material


(PDF 905 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jiang, Y., Yin, L. et al. Evaluation of the environmental epidemiologic data and methodology for the air quality standard in Beijing. Int J Biometeorol 61, 1511–1517 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Air pollutants
  • Generalized additive model (GAM)
  • Respiratory room visits