Skip to main content
Log in

Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Efficient air quality management is critical to protect public health from the adverse impacts of air pollution. To evaluate the effectiveness of air pollution control strategies, the US Environmental Protection Agency (US EPA) has developed the Software for Model Attainment Test-Community Edition (SMAT-CE) to assess the air quality attainment of emission reductions, and the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to evaluate the health and economic benefits of air quality improvement respectively. Since scientific decision-making requires timely and coherent information, developing the linkage between SMAT-CE and BenMAP-CE into an integrated assessment platform is desirable. To address this need, a new module linking SMAT-CE to BenMAP-CE has been developed and tested. The new module streamlines the assessment of air quality and human health benefits for a proposed air pollution control strategy. It also implements an optimized data gridding algorithm which significantly enhances the computational efficiency without compromising accuracy. The performance of the integrated software package is demonstrated through a case study that evaluates the air quality and associated economic benefits of a national-level control strategy of PM2.5. The results of the case study show that the proposed emission reduction reduces the number of nonattainment sites from 379 to 25 based on the US National Ambient Air Quality Standards, leading to more than US$334 billion of economic benefits annually from improved public health. The integration of the science-based software tools in this study enhances the efficiency of developing effective and optimized emission control strategies for policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen Z J, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Fischer P, Nieuwenhuijsen M, Vineis P, Xun W W, Katsouyanni K, Dimakopoulou K, Oudin A, Forsberg B, Modig L, Havulinna A S, Lanki T, Turunen A, Oftedal B, Nystad W, Nafstad P, de Faire U, Pedersen N L, Östenson C G, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen K T, Overvad K, Ellermann T, Eeftens M, Peeters P H, Meliefste K, Wang M, Bueno-de-Mesquita B, Sugiri D, Krämer U, Heinrich J, de Hoogh K, Key T, Peters A, Hampel R, Concin H, Nagel G, Ineichen A, Schaffner E, Probst-Hensch N, Künzli N, Schindler C, Schikowski T, Adam M, Phuleria H, Vilier A, Clavel-Chapelon F, Declercq C, Grioni S, Krogh V, Tsai M Y, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Katsoulis M, Trichopoulou A, Brunekreef B, Hoek G. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet, 2014, 383(9919): 785–795

    Article  CAS  Google Scholar 

  2. Kan H, Wong C M, Vichit-Vadakan N, Qian Z. Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study. Environmental Research, 2010, 110(3): 258–264

    Article  CAS  Google Scholar 

  3. Wan Mahiyuddin W R, Sahani M, Aripin R, Latif M T, Thach T Q, Wong C M. Short-term effects of daily air pollution on mortality. Atmospheric Environment, 2013, 65(0): 69–79

    Article  CAS  Google Scholar 

  4. Dockery DW, Stone P H. Cardiovascular risks from fine particulate air pollution. New England Journal of Medicine, 2007, 356(5): 511–513

    Article  CAS  Google Scholar 

  5. Karakatsani A, Kapitsimadis F, Pipikou M, Chalbot M C, Kavouras I G, Orphanidou D, Papiris S, Katsouyanni K. Ambient air pollution and respiratory health effects in mail carriers. Environmental Research, 2010, 110(3): 278–285

    Article  CAS  Google Scholar 

  6. Tao Y, Mi S, Zhou S, Wang S, Xie X. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environmental Pollution, 2014, 185(0): 196–201

    Article  CAS  Google Scholar 

  7. World Health Organization. Burden of disease from Ambient Air Pollution for 2012. 2014. Available online at http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_-March2014.pdf?ua=1 (accessed March 2014)

    Google Scholar 

  8. Naiker Y, Diab R D, Zunckel M, Hayes E T. Introduction of local Air Quality Management in South Africa: overview and challenges. Environmental Science & Policy, 2012, 17(0): 62–71

    Article  Google Scholar 

  9. Ma G, Wang J, Yu F, Zhang Y, Cao D. An assessment of the potential health benefits of realizing the goals for PM10 in the updated Chinese Ambient Air Quality Standard. Frontiers of Environmental Science & Engineering, DOI: 10.1007/s11783-014-0738-x

  10. Carnevale C, Finzi G, Pisoni E, Volta M, Guariso G, Gianfreda R, Maffeis G, Thunis P, White L, Triacchini G. An integrated assessment tool to define effective air quality policies at regional scale. Environmental Modelling & Software, 2012, 38(0): 306–315

    Article  Google Scholar 

  11. Yang Y, Zhu Y, Jang C, Xie J P, Wang S X, Fu J, Lin C J, Ma J, Ding D, Qiu X Z, Lao Y W. Research and development of environmental benefits mapping and analysis program: community edition. Acta Scientiae Circumstantiae, 2013, 33(09): 2395–2401 (in Chinese)

    CAS  Google Scholar 

  12. Wang H, Zhu Y, Jang C, Lin C J, Wang S, Fu J S, Gao J, Deng S, Xie J, Ding D, Qiu X, Long S. Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3. Journal of Environmental Sciences (China), 2015, 29(0): 178–188

    Article  CAS  Google Scholar 

  13. Lao YW, Zhu Y, Carey J, Lin C J, Xing J, Chen Z R, Xie J P, Wang S X, Fu J. Research and development of regional air pollution control decision support tool based on response surface model. Acta Scientiae Circumstantiae, 2012, 32(8): 1913–1922 (in Chinese)

    CAS  Google Scholar 

  14. Sun J, Schreifels J, Wang J, Fu J S, Wang S. Cost estimate of multipollutant abatement from the power sector in the Yangtze River Delta region of China. Energy Policy, 2014, 69(0): 478–488

    Article  Google Scholar 

  15. Microsoft. DotSpatial. 2013. Available online at http://dotspatial.codeplex.com/SourceControl/latest#Trunk/DotSpatial.Analysis/Voronoi.cs (accessed March, 2013)

    Google Scholar 

  16. Abt Associates Inc. Modeled Attainment Test Software User’s Manual. 2014. Available online at http://www.epa.gov/ttn/scram/guidance/guide/MATS_2-6-1_manual.pdf (accessed April 2014)

    Google Scholar 

  17. U.S. EPA. Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze. 2014. Available online at http://www.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf (accessed December, 2014)

    Google Scholar 

  18. Fann N, Baker K R, Fulcher C M. Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S. Environment International, 2012, 49: 141–151

    Article  CAS  Google Scholar 

  19. Davidson K, Hallberg A, McCubbin D, Hubbell B. Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP). Journal of Toxicology and Environmental Health-part A-current Issues, 2007, 70(3–4): 332–346

    Article  CAS  Google Scholar 

  20. International R T I. Environmental Benefits Mapping and Analysis Program User’s Manual Appendices. 2015. Available online at http://www2.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_appendices_march_2015.pdf (accessed March 2015)

    Google Scholar 

  21. International R T I. Environmental Benefits Mapping and Analysis Program User’s Manual. 2015. Available online at http://www2.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_-manual_march_2015.pdf (accessed March 2015)

    Google Scholar 

  22. Krewski D, Jerrett M, Burnett R T, Ma R, Hughes E, Shi Y, Turner M C, Pope C A 3rd, Thurston G, Calle E E, Thun M J, Beckerman B, DeLuca P, Finkelstein N, Ito K, Moore D K, Newbold K B, Ramsay T, Ross Z, Shin H, Tempalski B. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Research Report (Health Effects Institute), 2009, 140(140): 5–114, discussion 115–136

    Google Scholar 

  23. Woodruff T J, Grillo J, Schoendorf K C. The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environmental Health Perspectives, 1997, 105(6): 608–612

    Article  CAS  Google Scholar 

  24. Woodruff T J, Parker J D, Schoendorf K C. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environmental Health Perspectives, 2006, 114(5): 786–790

    Article  CAS  Google Scholar 

  25. Zanobetti A, Franklin M, Koutrakis P, Schwartz J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environmental Health, 2009, 8(1): 58

    Article  Google Scholar 

  26. Kloog I, Coull B A, Zanobetti A, Koutrakis P, Schwartz J D. Acute and chronic effects of particles on hospital admissions in New-England. PLoS ONE, 2012, 7(4): e34664

    Article  CAS  Google Scholar 

  27. Moolgavkar S H. Air pollution and hospital admissions for chronic obstructive pulmonary disease in three metropolitan areas in the United States. Inhalation Toxicology, 2000, 12(Suppl 4): 75–90

    Article  CAS  Google Scholar 

  28. Babin S M, Burkom H S, Holtry R S, Tabernero N R, Stokes L D, Davies-Cole J O, DeHaan K, Lee D H. Pediatric patient asthmarelated emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socioeconomic status and age group. Environmental Health, 2007, 6(1): 9

    Article  Google Scholar 

  29. Bell M L, Ebisu K, Peng R D, Walker J, Samet J M, Zeger S L, Dominici F. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. American Journal of Epidemiology, 2008, 168(11): 1301–1310

    Article  Google Scholar 

  30. Bell M L. Assessment of the health impacts of particulate matter characteristics. Research Report (Health Effects Institute), 2012, 161(161): 5–38

    CAS  Google Scholar 

  31. Moolgavkar S H. Air pollution and hospital admissions for diseases of the circulatory system in three U.S. metropolitan areas. Journal of the Air & Waste Management Association, 2000, 50(7): 1199–1206

    Article  CAS  Google Scholar 

  32. Abbey D E, Ostro B E, Petersen F, Burchette R J. Chronic respiratory symptoms associated with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in aerodynamic diameter (PM2.5) and other air pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 1995, 5(2): 137–159

    CAS  Google Scholar 

  33. Slaughter J C, Kim E, Sheppard L, Sullivan J H, Larson T V, Claiborn C. Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington. Journal of Exposure Analysis and Environmental Epidemiology, 2005, 15(2): 153–159

    Article  CAS  Google Scholar 

  34. Mar T F, Koenig J Q, Primomo J. Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma, Washington. Inhalation Toxicology, 2010, 22(6): 445–448

    Article  CAS  Google Scholar 

  35. Glad J A, Brink L L, Talbott E O, Lee P C, Xu X, Saul M, Rager J. The relationship of ambient ozone and PM2.5 levels and asthma emergency department visits: possible influence of gender and ethnicity. Archives of Environmental & Occupational Health, 2012, 67(2): 103–108

    Article  CAS  Google Scholar 

  36. Dockery DW, Cunningham J, Damokosh A I, Neas LM, Spengler J D, Koutrakis P, Ware J H, Raizenne M, Speizer F E. Health effects of acid aerosols on North American children: respiratory symptoms. Environmental Health Perspectives, 1996, 104(5): 500–505

    Article  CAS  Google Scholar 

  37. Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M. Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology (Cambridge, Mass), 2001, 12(2): 200–208

    Article  CAS  Google Scholar 

  38. Ostro B D, Rothschild S. Air pollution and acute respiratory morbidity: an observational study of multiple pollutants. Environmental Research, 1989, 50(2): 238–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Zhu, Y., Jang, C. et al. Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control. Front. Environ. Sci. Eng. 9, 1056–1065 (2015). https://doi.org/10.1007/s11783-015-0796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0796-8

Keywords

Navigation